线段树+差分【p1438】无聊的数列
Description
维护一个数列{a[i]},支持两种操作:
1、1 L R K D:给出一个长度等于R-L+1的等差数列,首项为K,公差为D,并将它对应加到a[L]~a[R]的每一个数上。即:令a[L]=a[L]+K,a[L+1]=a[L+1]+K+D,
a[L+2]=a[L+2]+K+2D……a[R]=a[R]+K+(R-L)D。
2、2 P:询问序列的第P个数的值a[P]。
Input
第一行两个整数数n,m,表示数列长度和操作个数。
第二行n个整数,第i个数表示a[i](i=1,2,3…,n)。
接下来的m行,表示m个操作,有两种形式:
1 L R K D
2 P 字母意义见描述(L≤R)。
Output
对于每个询问,输出答案,每个答案占一行。
很明显,这个题需要数据结构来维护。
维护区间,显然我们会想到线段树(貌似写树状数组更简单一些.)
维护一个等差数列会比较麻烦.
但是我们考虑一下等差数列的性质
\]
此时可以发现,我们维护一下前缀和不就好了.!
但是还可能影响到后面的状态,因此我们在最后减去这些项的和即可.
注意要在一个修改操作的起始位置赋值成\(k\)(首项),然后后面的每一项加上\(d\)即可.
最后如果右端点不为\(n\),我们需要减去前面等差数列的最后一项.
代码
#include<cstdio>
#include<cctype>
#define ls o<<1
#define rs o<<1|1
#define N 100008
#define R register
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m;
int a[N],tr[N<<2],tg[N<<2];
inline void up(int o)
{
tr[o]=tr[ls]+tr[rs];
}
inline void down(int o,int l,int r)
{
if(tg[o])
{
tg[ls]+=tg[o];tg[rs]+=tg[o];
int mid=(l+r)>>1;
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tr[o]+=(r-l+1)*z;
tg[o]+=z;
return;
}
int mid=(l+r)>>1;
down(o,l,r);
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid)change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int res=0,mid=(l+r)>>1;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int main()
{
in(n);in(m);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int opt,x,y,k,d;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y),in(k),in(d);
change(1,1,n,x,x,k);
if(y>x)change(1,1,n,x+1,y,d);
if(y!=n)change(1,1,n,y+1,y+1,-(k+(y-x)*d));
}
else
{
in(x);
printf("%d\n",a[x]+query(1,1,n,1,x));
}
}
}
线段树+差分【p1438】无聊的数列的更多相关文章
- P1438 无聊的数列 (差分+线段树)
题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r- ...
- [luogu P1438] 无聊的数列
[luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...
- Luogu P1438无聊的数列
洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...
- D - 小Z的加油店 线段树+差分+GCD
D - 小Z的加油店 HYSBZ - 5028 这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...
- P1438 无聊的数列
P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
- LUOGU P1438 无聊的数列 (差分+线段树)
传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相 ...
- 洛谷P1438 无聊的数列 (线段树+差分)
变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...
- 洛谷P1438 无聊的数列 [zkw线段树]
题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...
随机推荐
- 【题解】CQOI2007余数求和
大家都说这题水然而我好像还是调了有一会儿……不过暴力真的很良心,裸的暴力竟然还有60分. 打一张表出来,就会发现数据好像哪里有规律的样子,再仔细看一看,就会发现k/3~k/2为公差为2的等差数列,k/ ...
- [Leetcode] distinct subsequences 不同子序列
Given a string S and a string T, count the number of distinct subsequences of T in S. A subsequence ...
- 【ZJ选讲·钻石游戏】
N×M的棋盘(M,N<=500)中,每个格子有一个颜色(颜色数1~9) P次操作(P<=1000),每次给出两个相邻的位置(保证颜色不同,两个格子有一条公共边),把这两个格子交换. 定 ...
- hdu 1520Anniversary party 树形dp入门
There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The Un ...
- codeforces 1065D
题目链接:https://codeforces.com/problemset/problem/1065/D 题意:给你一个又1~n^2组成的n行n列的矩阵,你可以走日字型,直线,斜线,现在要求你从1走 ...
- JSR330的注解和spring的原生注解的比较
下面的图比较了JSR330和spring的原生注解.其实在大多数场合下他们之间可以互相代替.有可能spring写注解时参考了JSR330的注解:
- Things To Do Before NOI2017
TC div1 10套 数据结构 25题 网络流 10题 字符串 20题 数学 15题 图论 15题 计算几何 5题 提交答案 5题 嗯...先这些吧... 以上所有题目,博客都会有更新--- NOI ...
- 【BZOJ2663】灵魂宝石 [二分]
灵魂宝石 Time Limit: 5 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description “作为你们本体的灵魂,为了能够更好的 ...
- 密码框JPasswordField 的使用
JPasswordField的主要方法为setEchoChar(char c),其中的字符C为回显字符. package first; import javax.swing.*; import jav ...
- 阻塞DOM
DOM是解析后的HTML. 这些阻塞因素我们可以叫做 阻塞渲染的资源 ,例如 HTML.CSS(也包括web font)和 JavaScript. 请注意,图像是不会阻塞渲染的 ,所以如果有图像落在蓝 ...