Description

维护一个数列{a[i]},支持两种操作:

1、1 L R K D:给出一个长度等于R-L+1的等差数列,首项为K,公差为D,并将它对应加到a[L]~a[R]的每一个数上。即:令a[L]=a[L]+K,a[L+1]=a[L+1]+K+D,

a[L+2]=a[L+2]+K+2D……a[R]=a[R]+K+(R-L)D。

2、2 P:询问序列的第P个数的值a[P]。

Input

第一行两个整数数n,m,表示数列长度和操作个数。

第二行n个整数,第i个数表示a[i](i=1,2,3…,n)。

接下来的m行,表示m个操作,有两种形式:

1 L R K D

2 P 字母意义见描述(L≤R)。

Output

对于每个询问,输出答案,每个答案占一行。

很明显,这个题需要数据结构来维护。

维护区间,显然我们会想到线段树(貌似写树状数组更简单一些.)

维护一个等差数列会比较麻烦.

但是我们考虑一下等差数列的性质

\[a_{i+1}-a_i=d
\]

此时可以发现,我们维护一下前缀和不就好了.!

但是还可能影响到后面的状态,因此我们在最后减去这些项的和即可.

注意要在一个修改操作的起始位置赋值成\(k\)(首项),然后后面的每一项加上\(d\)即可.

最后如果右端点不为\(n\),我们需要减去前面等差数列的最后一项.

代码

#include<cstdio>
#include<cctype>
#define ls o<<1
#define rs o<<1|1
#define N 100008
#define R register
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m;
int a[N],tr[N<<2],tg[N<<2];
inline void up(int o)
{
tr[o]=tr[ls]+tr[rs];
}
inline void down(int o,int l,int r)
{
if(tg[o])
{
tg[ls]+=tg[o];tg[rs]+=tg[o];
int mid=(l+r)>>1;
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tr[o]+=(r-l+1)*z;
tg[o]+=z;
return;
}
int mid=(l+r)>>1;
down(o,l,r);
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid)change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int res=0,mid=(l+r)>>1;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int main()
{
in(n);in(m);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int opt,x,y,k,d;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y),in(k),in(d);
change(1,1,n,x,x,k);
if(y>x)change(1,1,n,x+1,y,d);
if(y!=n)change(1,1,n,y+1,y+1,-(k+(y-x)*d));
}
else
{
in(x);
printf("%d\n",a[x]+query(1,1,n,1,x));
}
}
}

线段树+差分【p1438】无聊的数列的更多相关文章

  1. P1438 无聊的数列 (差分+线段树)

    题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r- ...

  2. [luogu P1438] 无聊的数列

    [luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...

  3. Luogu P1438无聊的数列

    洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...

  4. D - 小Z的加油店 线段树+差分+GCD

    D - 小Z的加油店 HYSBZ - 5028   这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...

  5. P1438 无聊的数列

    P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...

  6. [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)

    [Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...

  7. LUOGU P1438 无聊的数列 (差分+线段树)

    传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相 ...

  8. 洛谷P1438 无聊的数列 (线段树+差分)

    变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...

  9. 洛谷P1438 无聊的数列 [zkw线段树]

    题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...

随机推荐

  1. 【题解】AHOI2009中国象棋

    还记得第一次看见这题的时候好像还是联赛前后的事了,那时感觉这题好强……其实现在看来蛮简单的,分类讨论一下即可.题意非常的简单:每一行,每一列都不能超过两个棋子.考虑我们的dp,如果一行一行转移的话行上 ...

  2. npm错误总结

    You cannot publish over the previously published version 1.0.1." : xxx 发布时一定要修改package.json的版本号 ...

  3. [NOI2003] 文本编辑器 (splay)

    复制炸格式了,就不贴题面了 [NOI2003] 文本编辑器 Solution 对于光标的移动,我们只要记录一下现在在哪里就可以了 Insert操作:手动维护中序遍历结果,即每次取中点像线段树一样一样递 ...

  4. DES 加密解密

    [概念] 数据加密算法(Data Encryption Algorithm,DEA)是一种对称加密算法,很可能是使用最广泛的密钥系统,特别是在保护金融数据的安全中,最初开发的DEA是嵌入硬件中的.通常 ...

  5. ios 全方位修改工程名

    本文针对于彻底修改iOS工程名,不需要另外建工程,会整理的跟新工程完全一样 1. 选中旧工程名,改为新的 然后选择rename 2. 依次选择黄色文件夹,修改名字,千万不要在Xcode外修改!!! 修 ...

  6. js介绍自己的例子

    js并不是真正面向对象的语言,但是我们通过一些方法也是可以实现js的一些面向对象设计的.常见的构造函数有很多模式有构造函数模式,原型链,工厂模式等等.但就是因为,我初学者看起来非常吃力,理解起来都是很 ...

  7. HDU1016 素数环---(dfs)

    http://acm.hdu.edu.cn/showproblem.php?pid=1016 Sample Input 6 8   Sample Output Case 1: 1 4 3 2 5 6 ...

  8. Sequence(ST表)(洛谷P2048)

    超级钢琴 知识储备 在做这道题前,我们先要了解一下ST表(一种离线求区间最值的方法) ST表使用DP实现的,其查询复杂度为O(1). 那么我们怎么用DP实现呢?? 首先,我们设立一个状态f[i][j] ...

  9. jquery with ajax

    with session storage: 1.ajax请求可以放在 $(document).ready(function (){...}); 里. 2. $.ajax({ url: "/a ...

  10. Oracle基础 02 临时表空间 temp

    --查看临时文件的使用/剩余空间 SQL> select * from v$temp_space_header; --查看SCOTT用户所属的临时表空间 SQL> select usern ...