线段树+差分【p1438】无聊的数列
Description
维护一个数列{a[i]},支持两种操作:
1、1 L R K D:给出一个长度等于R-L+1的等差数列,首项为K,公差为D,并将它对应加到a[L]~a[R]的每一个数上。即:令a[L]=a[L]+K,a[L+1]=a[L+1]+K+D,
a[L+2]=a[L+2]+K+2D……a[R]=a[R]+K+(R-L)D。
2、2 P:询问序列的第P个数的值a[P]。
Input
第一行两个整数数n,m,表示数列长度和操作个数。
第二行n个整数,第i个数表示a[i](i=1,2,3…,n)。
接下来的m行,表示m个操作,有两种形式:
1 L R K D
2 P 字母意义见描述(L≤R)。
Output
对于每个询问,输出答案,每个答案占一行。
很明显,这个题需要数据结构来维护。
维护区间,显然我们会想到线段树(貌似写树状数组更简单一些.)
维护一个等差数列会比较麻烦.
但是我们考虑一下等差数列的性质
\]
此时可以发现,我们维护一下前缀和不就好了.!
但是还可能影响到后面的状态,因此我们在最后减去这些项的和即可.
注意要在一个修改操作的起始位置赋值成\(k\)(首项),然后后面的每一项加上\(d\)即可.
最后如果右端点不为\(n\),我们需要减去前面等差数列的最后一项.
代码
#include<cstdio>
#include<cctype>
#define ls o<<1
#define rs o<<1|1
#define N 100008
#define R register
inline void in(int &x)
{
int f=1;x=0;char s=getchar();
while(!isdigit(s)){if(s=='-')f=-1;s=getchar();}
while(isdigit(s)){x=x*10+s-'0';s=getchar();}
x*=f;
}
int n,m;
int a[N],tr[N<<2],tg[N<<2];
inline void up(int o)
{
tr[o]=tr[ls]+tr[rs];
}
inline void down(int o,int l,int r)
{
if(tg[o])
{
tg[ls]+=tg[o];tg[rs]+=tg[o];
int mid=(l+r)>>1;
tr[ls]+=(mid-l+1)*tg[o];
tr[rs]+=(r-mid)*tg[o];
tg[o]=0;
}
}
void change(int o,int l,int r,int x,int y,int z)
{
if(x<=l and y>=r)
{
tr[o]+=(r-l+1)*z;
tg[o]+=z;
return;
}
int mid=(l+r)>>1;
down(o,l,r);
if(x<=mid)change(ls,l,mid,x,y,z);
if(y>mid)change(rs,mid+1,r,x,y,z);
up(o);
}
int query(int o,int l,int r,int x,int y)
{
if(x<=l and y>=r)return tr[o];
down(o,l,r);
int res=0,mid=(l+r)>>1;
if(x<=mid)res+=query(ls,l,mid,x,y);
if(y>mid)res+=query(rs,mid+1,r,x,y);
return res;
}
int main()
{
in(n);in(m);
for(R int i=1;i<=n;i++)in(a[i]);
for(R int opt,x,y,k,d;m;m--)
{
in(opt);
if(opt==1)
{
in(x),in(y),in(k),in(d);
change(1,1,n,x,x,k);
if(y>x)change(1,1,n,x+1,y,d);
if(y!=n)change(1,1,n,y+1,y+1,-(k+(y-x)*d));
}
else
{
in(x);
printf("%d\n",a[x]+query(1,1,n,1,x));
}
}
}
线段树+差分【p1438】无聊的数列的更多相关文章
- P1438 无聊的数列 (差分+线段树)
题目 P1438 无聊的数列 解析: 先考虑修改,用差分的基本思想,左端点加上首项\(k\),修改区间\((l,r]\)内每个数的差分数组都加上公差\(d\),最后的\(r+1\)再减去\(k+(r- ...
- [luogu P1438] 无聊的数列
[luogu P1438] 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个 ...
- Luogu P1438无聊的数列
洛谷 P1438无聊的数列 题目链接 点这里! 题目描述 维护一个数列\(a_i\),支持两种操作: 给出一个长度等于 \(r-l+1\)的等差数列,首项为\(k\) 公差为\(d\) 并将它对应加到 ...
- D - 小Z的加油店 线段树+差分+GCD
D - 小Z的加油店 HYSBZ - 5028 这个题目是一个线段树+差分+GCD 推荐一个差分的博客:https://www.cnblogs.com/cjoierljl/p/8728110.ht ...
- P1438 无聊的数列
P1438 无聊的数列 链接 分析: 等差数列可加,首项相加,公差相加. 代码: #include<cstdio> #include<algorithm> #include&l ...
- [Codeforces 316E3]Summer Homework(线段树+斐波那契数列)
[Codeforces 316E3]Summer Homework(线段树+斐波那契数列) 顺便安利一下这个博客,给了我很大启发(https://gaisaiyuno.github.io/) 题面 有 ...
- LUOGU P1438 无聊的数列 (差分+线段树)
传送门 解题思路 区间加等差数列+单点询问,用差分+线段树解决,线段树里维护的就是差分数组,区间加等差数列相当于在差分序列中l位置处+首项的值,r+1位置处-末项的值,中间加公差的值,然后单点询问就相 ...
- 洛谷P1438 无聊的数列 (线段树+差分)
变了个花样,在l~r区间加上一个等差数列,等差数列的显著特点就是公差d,我们容易想到用线段树维护差分数组,在l位置加上k,在l+1~r位置加上d,最后在r+1位置减去k+(l-r)*d,这样就是在差分 ...
- 洛谷P1438 无聊的数列 [zkw线段树]
题目传送门 无聊的数列 题目背景 无聊的YYB总喜欢搞出一些正常人无法搞出的东西.有一天,无聊的YYB想出了一道无聊的题:无聊的数列...(K峰:这题不是傻X题吗) 题目描述 维护一个数列{a[i]} ...
随机推荐
- 使用def文件简化dll导出
原文链接地址:http://www.cnblogs.com/TianFang/archive/2013/05/04/3059073.html 在C++中,我们可以通过 __declspec(dllex ...
- cookie 是存储于访问者的计算机中的变量
今天把javascript如何用来创建及存储cookie复习了一下,其中的一点体会拿出来和大家讨论,首先看一下基础知识: 什么是cookie cookie 是存储于访问者的计算机中的变量.每当同一台计 ...
- 怎么替换jar包里面的文件?
很多时候,我们需要替换包含在jar包里面的文件,例如修改里面的配置文件. 由于jar包已经生成,在不想重新用eclipse导出的情况下,我们怎么修改jar包里面的文件呢? 其实说出来很简单,可以使用以 ...
- LA2995 Image is everything
蓝书P12 #include <cstdio> #include <cstring> #include <cmath> #include <algorithm ...
- CORS服务端跨域
跨域,通常情况下是说在两个不通过的域名下面无法进行正常的通信,或者说是无法获取其他域名下面的数据,这个主要的原因是,浏览器出于安全问题的考虑,采用了同源策略,通过浏览器对JS的限制,防止恶意用户获取非 ...
- Matlab xpC启动盘
要点: 1.target PC的网卡支持类型有限: 2.网上所列教程未必适用于本地,仅以两图表示: a,带有图形界面时容易出错: b,启动选项为Removable Device:
- 【NOIP1999】邮票面值设计 dfs+dp
题目传送门 这道题其实就是找一波上界比较麻烦 用一波 背包可以推出上界mx 所以新加入的物品价值一旦大于mx+1,显然就会出现断层,所以可以以maxm+1为枚举上界,然后这样进行下一层的dfs. 这样 ...
- HTML5之FileReader的简易使用
用来把文件读入内存,并且读取文件中的数据.FileReader接口提供了一个异步API,使用该API可以在浏览器主线程中异步访问文件系统,读取文件中的数据.FileReader接口提供了读取文件的方法 ...
- hashlib模块加密用法
hashlib 加密模块 hashlib.md5() 构建一个md5的对象,用于调用对象的update方法去加密 例子: import hashlib hash = hashlib.md5() h ...
- MS笔试中的一个关于函数返回的“小”题
Which of following C++ code is correct ? A. int f() { ); return *a; } B. int *f() { int a[3] = {1,2, ...