有向图强连通分量的Tarjan算法及模板
【有向图强连通分量】
在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强联通(strongly connected),如果有向图G的每两个顶点都强联通,称有向图G是一个强联通图。非强联通图有向图的极大强联通子图(对于“极大”的理解,就是在一个局部子图中不能再大。就像是数学中的求一个函数中的极大值和极小值一样,例如求函数f(x)的极大值和极小值,变量x可以有不同的区间,所以在x的不同区间内就会有不同的极大值或极小值。) 称为强联通分量。直接根据定义用双向遍历取交集求强联通分量,时间复杂度为O(N……2+M)。更好的方法是kosaraju和tarjan算法,两者的时间复杂度都是O(N+M)。先介绍tarjan算法。
(点对(u,v)称为边或弧,若边的点对(u,v)有序则称为有向边,其中u称为tou,v称为尾)

(摘自wiki:https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm)
【定义】:
tarjan算法是基于对图深度优先搜索的算法,每个强联通分量为搜索树的一颗子树。搜索时,把当前搜索树中未处理的节点加入一个堆栈,回溯时可以判断栈顶到栈中节点是否为一个强联通分量。
定义dfn(u)为节点u搜索的次序编号(时间戳),low(u)为u或者u的子树能够追溯到的最早的栈中节点的次序号。//Low[u]是点集{u点及以u点为根的子树}中(所有反向弧)能指向的(离根最近的祖先v)的 DFN[v]值(即v点时间戳) //Low[u]表示以u点为父节点的子树能连接到 [栈中] 最上端的点 的DFN值(换句话说是最小的DFN,因为最上端的DFN是最小的嘛)
由定义可以得:
low(u)=min( dfn(u), low(v), dfn(v));
当dfn(u)=low(u)时,以u为根的搜索子树上的所有节点是一个强连通分量。
【应用】:
Tarjan是一个对图的分析的强有力的算法,主要应用有:有向图的强连通分量、无向图的割点桥与双连通分量、LCA(最近公共祖先)
【黑匣子】
先最初调用
1、init()
2、把图用add 存下来,注意图点标为1-n,若是[0,n-1]则给所有点++;
3、调用tarjan_init(n); 再调用suodian();
4、新图就是vector<int>G[]; 新图点标从1-tar ;
5、对于原图中的每个点u,都属于新图中的一个新点Belong[u];
新图一定是森林。
6、新图中的点u 所表示的环对应原图中的vector<int> bcc[u];
7、旧图中u在新图中所属的点是Belong[u];
Tarjan的实现主体就是dfs。可以自己画一个图感受一下,有向图中,每个强联通分量都是由多个环组成的,且这些环包含了集合中的所有元素且这些环两两相交,那么如果我们对于其中的任意一个元素进行dfs的话,最终这个强连通分量里的元素就会形成一颗子树,并且如果我们把我们的起始元素看作一棵树的根节点的话,那么它的子树中(也就是这个强联通分量中)一定会有节点它的父节点方向连边,并且这些向回连的边最终都会通到根节点,并且叶节点必然会向回连边(这是很显然的)。这样才能满足这个子树中的每个节点都能到达其他的各个节点。
知道了这些性质后,我们就可以进行操作了:
我们将每个强联通分量视为一个集合,一开始所有节点都是各自独立的集合,开两个数组dfn[ ]和low[ ],dfn记录的是节点被访问的顺序,low[i]记录i节点所在集合的代表元素的dfn值(这里类似于并查集),显然对于一个新的节点,集合的代表元素就是它本身,dfn[i]=low[i],。然后我们对其进行dfs,首先将它加入一个栈内,然后对它的每一个可以到达的节点进行dfs,如果它连接的节点是它的一个父节点(或祖父节点,也就是刚刚dfs路径上的点),那么low[i] = min( low[i], low[to] );如果它连接的节点已经被访问过(也就是已经dfs过)并且不是该节点的父节点或祖父节点,直接跳过(因为既然那个节点已经dfs过,而当前节点又是本次才访问到,那么说明那个节点出发一定不能到达当前节点,也就是说它们一定不在一个强联通分量里);我们看看上面这部分操作,它和并查集的操作是很像的,我们相当于将dfs路径上的环合并成了一个集合(相交环也被合成了一个集合),并且代表元素是最先访问的那个点,而由定义可知所有相交环都是一个强联通图,那么我们在回溯时,判断该节点的low[ ]是否等于dfn[ ],如果不相等,那么不做处理,直接返回,如果相等的话就说明该节点是一个集合的代表元素,我们在将刚才栈中的所有在该节点后面入栈的还在栈内的元素(包括它本身)出栈,这些元素就是一个强联通分量。这样的正确性是显然的,我们相当于将所有已经构建的集合保存了下来,而这些集合都是由相交环构成的,而相交环构成的集合一定是一个强联通分量,,所以我们构造出来的集合就一定是原图的强联通分量!
【算法伪代码如下】
tarjan(u)
{
dfn[u]=low[u]=++index //将节点u设定次序编号和low初值
stack.push(u) //将节点u压入栈中
for each(u,v) in E //枚举每一条边
if(v is not visted) //如果节点v未被访问过
tarjan(v) //继续向下找
low[u]=min(low[u],low[v])
else if(v in S) //如果节点还在栈内
low[u]=min(low[u],dfn[v])
if(dfn[u]==low[u]) //如果节点u是强联通分量的根
repeat
v=s.pop //将v退栈,为该强连通分量中的一个顶点
print v
until (u==v)
}
算法:
void tarjan(int i)
{
int j;
dfn[i]=low[i]=++index //将节点u设定次序编号和low初值
instack[i]=true; //将节点u压入栈中
stap[++stop]=i;
for(edge *e=v[i]; e; e=e->next) //枚举每一条边
{
j=e->t;
if(!dfn[j])
{
tarjan(j);
if(low[j]<low[i])
low[i]=low[j];
} else if(instack[j] && dfn[j]<low[i])
low[i]=dfn[j];
} if(dfn[i]==low[i])
{
cnt++;
do
{
j=stap[stop--];
instack[j]=false;
belong[j]=cnt;
}while(j!=i);
}
} void solve()
{
int i;
stop=cnt=index=;
memset(dfn,,sizeof(dfn));
for(i=; i<=n; i++)
{
if(!dfn[i])
tarjan(i);
}
}
有向图强连通分量的Tarjan算法及模板的更多相关文章
- 有向图强连通分量的Tarjan算法
有向图强连通分量的Tarjan算法 [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G ...
- 算法笔记_144:有向图强连通分量的Tarjan算法(Java)
目录 1 问题描述 2 解决方案 1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连 ...
- 【转】有向图强连通分量的Tarjan算法
原文地址:https://www.byvoid.com/blog/scc-tarjan/ [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly con ...
- 【转载】有向图强连通分量的Tarjan算法
转载地址:https://www.byvoid.com/blog/scc-tarjan [有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly conn ...
- 有向图强连通分量的Tarjan算法(转)
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
- 『图论』有向图强连通分量的Tarjan算法
在图论中,一个有向图被成为是强连通的(strongly connected)当且仅当每一对不相同结点u和v间既存在从u到v的路径也存在从v到u的路径.有向图的极大强连通子图(这里指点数极大)被称为强连 ...
- Java实现有向图强连通分量的Tarjan算法
1 问题描述 引用自百度百科: 如果两个顶点可以相互通达,则称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.有向图的极大强连通子图,称为 ...
- 强连通分量的Tarjan算法
资料参考 Tarjan算法寻找有向图的强连通分量 基于强联通的tarjan算法详解 有向图强连通分量的Tarjan算法 处理SCC(强连通分量问题)的Tarjan算法 强连通分量的三种算法分析 Tar ...
- 有向图强连通分量的Tarjan算法和Kosaraju算法
[有向图强连通分量] 在有向图G中,如果两个顶点间至少存在一条路径,称两个顶点强连通(strongly connected).如果有向图G的每两个顶点都强连通,称G是一个强连通图.非强连通图有向图的极 ...
随机推荐
- hdu 1267 下沙的沙子有几粒? (递推)
下沙的沙子有几粒? Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total S ...
- 【题解】AHOI2009同类分布
好开心呀~果然只有不看题解做出来的题目才会真正的有一种骄傲与满足吧ヾ(๑╹◡╹)ノ" 实际上这题只要顺藤摸瓜就可以了.首先按照数位dp的套路,有两维想必是省不掉:1.当前dp到到的位数:2. ...
- fastjson对json操作
fastjson对json字符串JSONObject和JSONArray互相转换操作示例 fastjson的方法: Fastjson API入口类是com.alibaba.fastjson.JSON ...
- java的URI和URL到底是什么
在我们做开发时,经常有URI和URL弄混的问题,如果当时直接看URI和URL的源码就不可能弄混.首先我总结一下URI和URL的关系:他们的关系是:URL是一种特殊的URI,是URI包括URL, 下面用 ...
- 如何让spring源码正常的部署在idea中
我在这里把我从GitHub下载的源码成功编译之后的文件放在了我的百度网盘上大家可以直接下载,也可以按如下步骤自己编译部署到idea中, 下载的地址是:http://pan.baidu.com/s/1d ...
- bzoj 2756 [SCOI2012]奇怪的游戏 二分+网络流
2756:[SCOI2012]奇怪的游戏 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 4926 Solved: 1362[Submit][Stat ...
- MySQL主主搭建
1.在MySQL主从的基础上修改: #master1上 [mysqld] server-id=101 log-bin = mysql-bin auto-increment-increment = 2 ...
- 浏览器 连不上网 (3):DNS 服务器问题
解决:设置一下DNS服务器的地址 步骤: 打开网络和共享中心(网络和 Internet设置)-> 更改适配器 -> 双击我们连接的 无线网(WiFi式) 或 以太网(网线式): 从出现的窗 ...
- DP---背包问题
http://www.hawstein.com/posts/dp-knapsack.html http://www.cnblogs.com/wwwjieo0/archive/2013/04/01/29 ...
- set .net principle
var ticket = new FormsAuthenticationTicket(1, username, DateTime.Now, DateTime.Now.AddMinutes(FormsA ...