layout: post

title: 训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))

author: "luowentaoaa"

catalog: true

mathjax: true

tags:

- KM算法

- 训练指南


Golden Tiger Claw

UVA - 11383

题意

给一个n*n的矩阵,每个格子中有正整数w[i[j],试为每行和每列分别确定一个数字row[i]和col[i],使得任意格子w[i][j]<=row[i]+col[j]恒成立。先输row,再输出col,再输出全部总和(总和应尽量小)。

思路

本题与匹配无关,但可以用KM算法解决。

  KM算法中的顶标就是保持了Lx[i]+ly[j]>=g[i[j]再求最大权和匹配的,但这个最大权和并没有关系。我们可以将row[i]看成一个男的,col[i]看成一个女的,这样男女的总数就相等。

  一般来说,Lx[i]或Ly[i]仅需要取该行/列中最大的那个数即可保证满足要求,但是这样太大了,可以通过调整来使得总和更小。而KM算法的过程就是一个调整的过程,每一对匹配的男女的那条边的权值就会满足等号 wi[j]=row[i]+col[j],至少需要一个来满足等号,这样才能保证row[i]+col[j]是达到最小的,即从j列看,col[j]满足条件且最小,从i行看,row[i]满足条件且最小。这刚好与KM算法求最大权和一样。

#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll mod=998244353;
const int maxn=5e2+50;
const ll inf=1e10;
const ll INF = 1000000000;
const double eps=1e-5;
int g[530][530]; ///存图
int nx,ny; /// 两边点数
bool visx[maxn],visy[maxn];
int slack[maxn];
int linker[maxn]; ///y中各点匹配状态
int lx[maxn],ly[maxn]; /// x,y中的点标号
bool dfs(int x){
visx[x]=true;
for(int y=0;y<ny;y++){
if(visy[y])continue;
int tmp=lx[x]+ly[y]-g[x][y];
if(tmp==0){
visy[y]=true;
if(linker[y]==-1||dfs(linker[y])){
linker[y]=x;return true;
}
}
else if(slack[y]>tmp)slack[y]=tmp;
}
return false;
}
int KM(){
memset(linker,-1,sizeof(linker));
memset(ly,0,sizeof(ly));
for(int i=0;i<nx;i++){
lx[i]=-inf;
for(int j=0;j<ny;j++){
if(g[i][j]>lx[i])lx[i]=g[i][j];
}
}
for(int x=0;x<nx;x++){
for(int i=0;i<ny;i++)slack[i]=inf;
while(true){
memset(visx,false,sizeof(visx));
memset(visy,false,sizeof(visy));
if(dfs(x))break;
int d=inf;
for(int i=0;i<ny;i++)
if(!visy[i]&&d>slack[i])d=slack[i];
for(int i=0;i<nx;i++)
if(visx[i])lx[i]-=d;
for(int i=0;i<ny;i++)
if(visy[i])ly[i]+=d;
else slack[i]-=d;
}
}
int res=0;
for(int i=0;i<ny;i++)
if(linker[i]!=-1)res+=g[linker[i]][i];
return res;
} int main()
{
std::ios::sync_with_stdio(false);
std::cin.tie(0);
std::cout.tie(0);
int n;
while(cin>>n){
nx=ny=n;
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)cin>>g[i][j];
int ans=KM();
cout<<lx[0];
for(int i=1;i<n;i++)cout<<" "<<lx[i];cout<<endl;
cout<<ly[0];
for(int i=1;i<n;i++)cout<<" "<<ly[i];cout<<endl;
cout<<ans<<endl;
} return 0;
}

训练指南 UVA - 11383(KM算法的应用 lx+ly >=w(x,y))的更多相关文章

  1. 训练指南 UVA - 11419(二分图最小覆盖数)

    layout: post title: 训练指南 UVA - 11419(二分图最小覆盖数) author: "luowentaoaa" catalog: true mathjax ...

  2. 训练指南 UVA - 11354(最小生成树 + 倍增LCA)

    layout: post title: 训练指南 UVA - 11354(最小生成树 + 倍增LCA) author: "luowentaoaa" catalog: true ma ...

  3. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  4. 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环)

    layout: post title: 训练指南 UVA - 11090(最短路BellmanFord+ 二分判负环) author: "luowentaoaa" catalog: ...

  5. 训练指南 UVA - 10917(最短路Dijkstra + 基础DP)

    layout: post title: 训练指南 UVA - 10917(最短路Dijkstra + 基础DP) author: "luowentaoaa" catalog: tr ...

  6. 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板)

    layout: post title: 训练指南 UVA - 11374(最短路Dijkstra + 记录路径 + 模板) author: "luowentaoaa" catalo ...

  7. 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP)

    layout: post title: 训练指南 UVA - 11324(双连通分量 + 缩点+ 基础DP) author: "luowentaoaa" catalog: true ...

  8. 算法竞赛入门经典训练指南——UVA 11300 preading the Wealth

    A Communist regime is trying to redistribute wealth in a village. They have have decided to sit ever ...

  9. 【UVA 11383】 Golden Tiger Claw (KM算法副产物)

    Omi, Raymondo, Clay and Kimiko are on new adventure- in search of new Shen Gong Wu. But EvilBoy Geni ...

随机推荐

  1. [学习笔记]对未来做出承诺的DP小结

    这是一种DP状态设计方法. 有些题,当你必须以一个顺序往后填的话,然而后面的填法会对之前产生影响,那么,不妨在之前就对未来怎么填做出承诺. 通俗的讲,就是对未来打一个表. 然后后面填的时候,直接查表转 ...

  2. 自定义toolbar教程

    1.写toolbar的布局文件 ,toolbar.xml <?xml version="1.0" encoding="utf-8"?> <Re ...

  3. CentOS 安装 debuginfo-install

    安装debuginfo相关的包步骤如下: 1. 修改文件/etc/yum.repos.d/CentOS-Debuginfo.repo中的enabled参数,将其值修改为1 2. 使用命令: yum i ...

  4. js 加法运算

    搜集网友的各种解决办法: 1.parseInt(),parseFloat()等字符串转换函数 2.eval(执行加法的表达式) 3.a-(-b)  因为减法只有算术运算意义 a*1+b a为字符串 a ...

  5. Python 入门学习笔记

    安装和运行 官网下载安装包https://www.python.org/downloads/mac-osx/下载完直接安装即可 运行打开 terminal,输入命令 python,进入 python ...

  6. 搭建jfinal+maven框架

    1.创建一个maven web项目. 2.添加引用包         <dependency>             <groupId>com.jfinal</grou ...

  7. HDU5748---(记录每个元素的 最长上升子序列 nlogn)

    分析: 给一个序列,求出每个位置结尾的最长上升子序列 O(n^2) 超时 #include "cstdio" #include "algorithm" #def ...

  8. [洛谷P1074] 靶形数独

    洛谷题目链接:靶形数独 题目描述 小城和小华都是热爱数学的好学生,最近,他们不约而同地迷上了数独游戏,好胜的他们想用数独来一比高低.但普通的数独对他们来说都过于简单了,于是他们向 Z 博士请教,Z 博 ...

  9. Sass、Ruby、Nodejs、gulp

    1.Sass文件就是普通的文本文件,不过其文件后缀名有两种,一种为“.sass”:另一种为“.scss”.我们一般用“.scss”就好,至于这两种文件扩展名的区别在于“.sass”是Sass语言文件的 ...

  10. Ubuntu 15.10 安装比特币客户端

    下载 git clone https://github.com/bitcoin/bitcoin.git cd bitcoin ./autogen.sh 安装依赖包: ++-dev sudo apt-g ...