LA 5009 (HDU 3714) Error Curves (三分)
Time Limit:3000MS Memory Limit:0KB 64bit IO Format:%lld
& %llu
Description

Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.
In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.
To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the formf(x) = ax2 + bx + c.
The quadratic will degrade to linear function ifa = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance
on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple
quadric functions.
The new function F(x) is defined as follow:
F(x) = max(Si(x)), i = 1...n. The domain ofx is [0, 1000].Si(x) is a quadric function.
Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?
Input
The input contains multiple test cases. The first line is the number of cases
T (T < 100). Each case begins with a number n(n ≤ 10000). Followingn lines, each line contains three integersa (0 ≤
a ≤ 100),b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.
Output
For each test case, output the answer in a line. Round to 4 digits after the decimal point.
Sample Input
2
1
2 0 0
2
2 0 0
2 -4 2
Sample Output
0.0000
0.5000
大致题意:给了好多抛物线f(i)的a[i], b[i], c[i], 定义F (i)= max(f(i)) , 求F(x)在区间【0,1000】上的最小值。
解题思路:因为题中给出的a>=0, 所以a有可能为零,此时曲线为直线。否则曲线为开口向上的抛物线,故为下凸函数,所以F(x)也为下凸函数。故可用三分法求F(x)的极值。先算出F(x)的详细值,然后就可直接三分了。详见代码
AC代码:
#include <cstdio>
#include <algorithm>
using namespace std; const int maxn = 10000 + 10;
int n, a[maxn], b[maxn], c[maxn]; double f(double x){ //求F(x)
double ans = a[0]*x*x + b[0]*x + c[0];
for(int i=1; i<n; i++){
ans = max(ans, a[i]*x*x+b[i]*x+c[i]);
}
return ans;
} int main(){
// freopen("in.txt","r",stdin);
int T;
scanf("%d",&T);
while(T--){
scanf("%d", &n);
for(int i=0; i<n; i++)
scanf("%d%d%d", &a[i], &b[i], &c[i]);
double l = 0, r = 1000; //三分求极值
for(int i=0; i<100; i++){
double mid = l + (r-l)/3;
double midmid = r - (r-l)/3;
if(f(mid) < f(midmid)) r = midmid;
else l = mid;
}
printf("%.4lf\n",f(l));
}
return 0;
}
LA 5009 (HDU 3714) Error Curves (三分)的更多相关文章
- nyoj 1029/hdu 3714 Error Curves 三分
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3714 懂了三分思想和F(x)函数的单调性质,这题也就是水题了 #include "stdio ...
- hdu 3714 Error Curves(三分)
http://acm.hdu.edu.cn/showproblem.php?pid=3714 [题意]: 题目意思看了很久很久,简单地说就是给你n个二次函数,定义域为[0,1000], 求x在定义域中 ...
- hdu 3714 Error Curves(三分)
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Tot ...
- HDU 3714 Error Curves
Error Curves 思路:这个题的思路和上一个题的思路一样,但是这个题目卡精度,要在计算时,卡到1e-9. #include<cstdio> #include<cstring& ...
- 三分 HDOJ 3714 Error Curves
题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...
- UVA - 1476 Error Curves 三分
Error Curves Josephina is a clever girl and addicted to Machi ...
- UVALive 5009 Error Curves 三分
//#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #include& ...
- Error Curves HDU - 3714
Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a m ...
- HDU 3714/UVA1476 Error Curves
Error Curves Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Tota ...
随机推荐
- asp.net中利用JSON进行增删改查中运用到的方法
//asp.net中 利用JSON进行操作, //增加: //当点击“增加链接的时候”,弹出增加信息窗口,然后,在窗体中输入完整信息,点击提交按钮. //这里我们需要考虑这些:我会进行异步提交,使用j ...
- 树链剖分【CF343D】Water Tree
Description Mad scientist Mike has constructed a rooted tree, which consists of nnvertices. Each ver ...
- NGUI_Sprites
一.UI Sprites 控件: Sprites控件是NGUI的基础控件,几乎可以这么说所有的控件都可以基于Sprites控件添加 Box Collider然后进行附加相关的脚本组件来达到想要的插件效 ...
- small test on 5.30 morning T3
经典的等价类计数问题,我们设 f(x) 为环长为 x 的时候的花环种类,那么答案显然等于 1/n * Σf( gcd (i,n) * [gcd(i,n)!=1] * [i>=0&&a ...
- [Contest20180116]随机游走
题意:给一棵树,多次询问$a$到$b$期望步数,每一步都是随机的 对期望DP了解更深入了一些 先预处理$up_x$表示从$x$走到$fa_x$的期望步数 可以直接往上走,也可以先去儿子再回来,设$x$ ...
- Dom4jDemo应用-保存手机信息
---恢复内容开始--- import java.io.File; import java.io.FileNotFoundException; import java.io.FileOutputStr ...
- @requestBody注解的使用(上)
1.@requestBody注解常用来处理content-type不是默认的application/x-www-form-urlcoded编码的内容,比如说:application/json或者是ap ...
- hadoop map(分片)数量确定
之前学习hadoop的时候,一直希望可以调试hadoop源码,可是一直没找到有效的方法,今天在调试矩阵乘法的时候发现了调试的方法,所以在这里记录下来. 1)事情的起因是想在一个Job里设置map的数量 ...
- delphi模态窗口跑到后面的解决办法
Delphi(68) procedure TForm1.ShowForm2;begin Self.Enabled := False; try with TForm2.Create(ni ...
- display:flex;多行多列布局学习
从以前的table布局到现在的div布局,再到未来的flex布局,CSS重构方面对展示行和适应性的要求越来越高: 首先来比较一下布局方式的更新意义: table布局: 优点:1.兼容性好,ie6.ie ...