Time Limit: 10 Sec  Memory Limit: 259 MB
Submit: 185  Solved: 118

Description

公元3000年,地球联盟已经攻占了银河系内的N个星球,出于资金的考虑,政府仅仅在星球间建立了N-1条双向时空隧道保证任意两个星球之间互相可达。出于管理上的考虑,第i个星球的行政长官要求每个公民在一年内不得从该星球利用时空隧道次数超过Hi次(这一统计是基于离开次数统计的,如果你已经使用从该星球离开过Hi次,那么这一年内你就不能再使用时空隧道离开这个星球了)。Louis Paosen是一个星际旅行家,他希望能使用尽量多次的时空隧道,但又不希望最终被迫定居的星球条件太过恶劣。所以他希望能知道对于每个星球i,若从0号星球出发,最终以i号星球为终点,这样的星际旅行途中最多可以使用多少次时空隧道。

Input

第一行包含一个整数N。接下来的一行包含N个整数Hi,分别表示每个星球的离开次数限制。接下来N-1行每行两个整数,表示这两个星球之间有时空隧道连接。星球的编号从0开始,Louis Paosen一开始在0号星球。

Output

包含N行,每行一个整数,表示如果最终旅行结束在这个星球,最多可以使用时空隧道的次数。

Sample Input

3
2 6 2
0 1
1 2

Sample Output

8
7
8

HINT

40%的数据N≤500
100%的数据中N≤50000。
所有星球的离开次数限制满足1≤Hi≤40000,且每个星球的Hi大于等于与该星球直接相连的星球数(即度数)。

Source

树形DP

每个星球的Hi大于等于度数,即是说可以先遍历全图一遍并回到0点。

之后开始DP

需要用到网络流中的“退流”思想:如果相邻两点度数足够多,就可以来回走积累次数,如果这样使得之后的离开次数不够用了,就从前面退一次

 /*by SilverN*/
#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
const int mxn=;
int read(){
int x=,f=;char ch=getchar();
while(ch<'' || ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>='' && ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
struct edge{
int v,nxt;
}e[mxn<<];
int hd[mxn],mct=;
void add_edge(int u,int v){
e[++mct].v=v;e[mct].nxt=hd[u];hd[u]=mct;return;
}
int n,h[mxn],f[mxn];
int smm=;
int ans[mxn];
void DFS(int u,int fa){
for(int i=hd[u],v;i;i=e[i].nxt){
v=e[i].v;
if(v==fa)continue;
DFS(v,u);
int tmp=min(h[v],h[u]);
h[v]-=tmp;h[u]-=tmp;
if(h[v])f[u]=v;
smm+=tmp<<;
}
return;
}
int mrk[mxn];
void DP(int u,int fa){
ans[u]=smm;
for(int i=hd[u],v;i;i=e[i].nxt){
v=e[i].v;
if(v==fa)continue;
if(h[u]){
h[u]--;smm++;
DP(v,u);
h[u]++;smm--;
}
else if(f[v]){
h[f[v]]--;smm++;
DP(v,u);
h[f[v]]++;smm--;
}
else{
h[v]++;smm--;
DP(v,u);
h[v]--;smm++;
}
}
return;
}
int main(){
int i,j,u,v;
n=read();
for(i=;i<=n;i++)h[i]=read();
for(i=;i<n;i++){
u=read()+;v=read()+;
add_edge(u,v);add_edge(v,u);
--h[u];--h[v];
}
smm=(n-)<<;
DFS(,);
DP(,);
for(i=;i<=n;i++){
printf("%d\n",ans[i]);
}
return ;
}

Bzoj1917 [Ctsc2010]星际旅行的更多相关文章

  1. [CTSC2010]星际旅行

    https://www.luogu.org/problemnew/show/P4189 题解 模拟费用流. 首先有一个非常好的条件,每个点的限制次数都大于等于这个点的度数. 然后我们可以从\(0\)开 ...

  2. 题解 洛谷 P4189 【[CTSC2010]星际旅行】

    一个比较直接的想法就是对每个点进行拆点,拆成入点和出点,限制放在入点和出点相连的边上,然后跑最大费用最大流即可. 但是这样复杂度无法接受,所以考虑模拟费用流来解决本题. 发现 \(H\) 都大于等于该 ...

  3. bzoj AC倒序

    Search GO 说明:输入题号直接进入相应题目,如需搜索含数字的题目,请在关键词前加单引号 Problem ID Title Source AC Submit Y 1000 A+B Problem ...

  4. [CTSC2010]珠宝商 SAM+后缀树+点分治

    [CTSC2010]珠宝商 不错的题目 看似无法做,n<=5e4,8s,根号算法? 暴力一: n^2,+SAM上找匹配点的right集合sz,失配了直接退出 暴力二: O(m) 统计过lca=x ...

  5. [CTSC2010]性能优化

    [CTSC2010]性能优化 循环卷积快速幂 两个注意点:n+1不是2^k*P+1形式,任意模数又太慢?n=2^k1*3^k2*5^k3*7^k4 多路分治!深刻理解FFT运算本质:分治,推式子得到从 ...

  6. 【BZOJ1921】【CTSC2010】珠宝商(点分治,后缀自动机)

    [BZOJ1921][CTSC2010]珠宝商(点分治,后缀自动机) 题面 洛谷 BZOJ权限题 题解 如果要我们做暴力,显然可以以某个点为根节点,然后把子树\(dfs\)一遍,建出特征串的\(SAM ...

  7. 7.18 NOIP模拟测试5 星际旅行+砍树+超级树

    T1 星际旅行 题意:n个点,m条边,无重边,有自环,要求经过m-2条边两次,2条边一次,问共有多少种本质不同的方案.本质不同:当且仅当至少存在一条边经过次数不同. 题解:考试的时候理解错题,以为他是 ...

  8. P4218 [CTSC2010]珠宝商

    P4218 [CTSC2010]珠宝商 神题... 可以想到点分治,细节不写了... (学了个新姿势,sam可以在前面加字符 但是一次点分治只能做到\(O(m)\),考虑\(\sqrt n\)点分治, ...

  9. 「题解」:07.18NOIP模拟赛T1:星际旅行

    问题 A: 星际旅行 时间限制: 1 Sec  内存限制: 256 MB 题面 题面谢绝公开. 考试心路历程 拿到这道题感觉很懵逼,所以先搞的T2和T3,最后码了个暴力,结果还不如直接输出‘0’得分高 ...

随机推荐

  1. Oracle 完全理解connect by-详细脚本-可实战

    狒狒Q971751392 未来星开发团队--狒狒(QQ:9715234) oracle树查询的最重要的就是select…start with…connect by…prior语法了.依托于该语法,我们 ...

  2. 在Linux中安装和配置OpenVPN Server的最简便方法!

    本文介绍了如何在基于RPM和DEB的系统中安装和配置OpenVPN服务器.我们在本文中将使用一个名为openvpn-install的脚本,它使整个OpenVPN服务器的安装和配置过程实现了自动化.该脚 ...

  3. 【WPF】 布局篇

    [WPF] 布局篇 一. 几个常用且至关重要的属性 1. Width,Height : 设置窗体,控件宽高. 这里注意,WPF是自适应的, 所以把这2个属性设置 Auto, 则控件宽高会自动改变. 2 ...

  4. css匹配规则及性能

    一.CSS是如何匹配样式的 样式系统从最右边的选择符开始向左进行匹配规则.只要当前选择符的左边还有其他选择符,样式系统就会继续向左移动,直到找到和规则匹配的元素,或者因为不匹配而退出. 二.CSS选择 ...

  5. Selenium驱动Firefox浏览器

    用Maven构建Selenium依赖: <dependency> <groupId>org.seleniumhq.selenium</groupId> <ar ...

  6. Sleuth+Zipkin+Log

    https://blog.csdn.net/sqzhao/article/details/70568637 https://blog.csdn.net/yejingtao703/article/det ...

  7. Micro Average vs Macro average Performance in a Multiclass classification setting

    整理摘自 https://datascience.stackexchange.com/questions/15989/micro-average-vs-macro-average-performanc ...

  8. 什么是http?

    http请求流程: http课程链接:http://www.imooc.com/video/6712/0

  9. python字符串排序方法

    一般情况下,python中对一个字符串排序相当麻烦: 一.python中的字符串类型是不允许直接改变元素的.必须先把要排序的字符串放在容器里,如list. 二.python中的list容器的sort( ...

  10. python中字典的循环遍历的两种方式

    开发中经常会用到对于字典.列表等数据的循环遍历,但是python中对于字典的遍历对于很多初学者来讲非常陌生,今天就来讲一下python中字典的循环遍历的两种方式. 注意: python2和python ...