【数论】【组合数】【快速幂】【乘法逆元】洛谷 P2265 路边的水沟
从左上角到右下角,共经过n+m个节点,从其中选择n各节点向右(或者m各节点向下),所以答案就是C(n+m,n)或者C(n+m,m),组合数暴力算即可,但是要取模,所以用了乘法逆元。
#include<iostream>
#include<cstdio>
using namespace std;
typedef long long ll;
#define CONST_MOD 1000000007
ll n,m;
ll pow_mod(ll a,ll p,ll MOD)
{
if(!p) return ;
ll ans=pow_mod(a,p>>,MOD);
ans=ans*ans%MOD;
if((p&)==) ans=ans*a%MOD;
return ans;
}
ll muls(ll a,ll b)
{
ll res=;
for(ll i=a;i<=b;i++)
res=res*i%CONST_MOD;
return res;
}
ll C(ll a,ll b)
{
return muls(b+,a)*pow_mod(muls(,a-b),CONST_MOD-,CONST_MOD)%CONST_MOD;
}
int main()
{
cin>>n>>m;
cout<<C(n+m,n)<<endl;
return ;
}
【数论】【组合数】【快速幂】【乘法逆元】洛谷 P2265 路边的水沟的更多相关文章
- 洛谷P2265 路边的水沟
题目 题目背景 LYQ市有一个巨大的水沟网络,可以近似看成一个n*m的矩形网格,网格的每个格点都安装了闸门,我们将从水沟网络右下角的闸门到左上角的闸门的一条路径称为水流. 题目描述 现给定水沟网的长和 ...
- hdu-4990 Reading comprehension(快速幂+乘法逆元)
题目链接: Reading comprehension Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ( ...
- 51Nod 1013 3的幂的和 快速幂 | 乘法逆元 | 递归求和公式
1.乘法逆元 直接使用等比数列求和公式,注意使用乘法逆元 ---严谨,失细节毁所有 #include "bits/stdc++.h" using namespace std; #d ...
- 逆元-P3811 【模板】乘法逆元-洛谷luogu
https://www.cnblogs.com/zjp-shadow/p/7773566.html -------------------------------------------------- ...
- 乘法逆元-洛谷-P3811
题目背景 这是一道模板题 题目描述 给定n,p求1~n中所有整数在模p意义下的乘法逆元. 输入输出格式 输入格式: 一行n,p 输出格式: n行,第i行表示i在模p意义下的逆元. 输入输出样例 输入样 ...
- hdu-5690 All X(快速幂+乘法逆元)
题目链接: All X Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others) Pro ...
- Happy 2004(快速幂+乘法逆元)
Happy 2004 问题描述 : Consider a positive integer X,and let S be the sum of all positive integer divisor ...
- HDU 5793 A Boring Question (找规律 : 快速幂+乘法逆元)
A Boring Question Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others ...
- HDU4869:Turn the pokers(快速幂求逆元+组合数)
题意: 给出n次翻转和m张牌,牌相同且一开始背面向上,输入n个数xi,表示xi张牌翻转,问最后得到的牌的情况的总数. 思路: 首先我们可以假设一开始牌背面状态为0,正面则为1,最后即是求ΣC(m,k) ...
随机推荐
- Backup and Restore MySQL Database using mysqlhotcopy
mysqlhotcopy is a perl script that comes with MySQL installation. This locks the table, flush the ta ...
- Codeforces Round #520 (Div. 2) D. Fun with Integers
D. Fun with Integers 题目链接:https://codeforc.es/contest/1062/problem/D 题意: 给定一个n,对于任意2<=|a|,|b|< ...
- Unable to start activity ComponentInfo{com.example.administrator.myapplication/com.example.administrator.myapplication.MainActivity}: android.view.InflateException: Binary XML file line #0: Binary XM
本来就是把fragment写死在activity的xml模板里面,结果报了这个错误, Unable to start activity ComponentInfo{com.example.admini ...
- spring @Profile的运用示例
@Profile的作用是把一些meta-data进行分类,分成Active和InActive这两种状态,然后你可以选择在active 和在Inactive这两种状态 下配置bean, 在Inactiv ...
- namenode磁盘满引发recover edits文件报错
前段时间公司hadoop集群宕机,发现是namenode磁盘满了, 清理出部分空间后,重启集群时,重启失败. 又发现集群Secondary namenode 服务也恰恰坏掉,导致所有的操作log持续写 ...
- PHP等比例生成缩略图
/** * 生成缩略图 * $imgSrc 图片源路径 * $resize_width 图片宽度 * $resize_height 图片高度 * $dstimg 缩略图路径 * $isCut 是否剪切 ...
- GDOI2015的某道题目
分析: 考试的时候由于一些神奇的原因(我就不说是什么了)...没有想$C$题,直接交了个暴力上去... 然后发现暴力的数组开的太大,由于矩阵乘法的需要做$m$次初始化,所以只拿到了10分... 我们一 ...
- bzoj 1951 lucas crt 费马小定理
首先假设输入的是n,m 我们就是要求m^(Σ(c(n,i) i|n)) mod p 那么根据费马小定理,上式等于 m^(Σ(c(n,i) i|n) mod (p-1)) mod p 那么问题的关键就 ...
- Python学习笔记 - day1 - 概述及安装
Python概述 Python是一种计算机程序设计语言.我们平时已经听说过很多种流行的编程语言,比如非常难学的C语言,非常流行的Java语言,适合网页编程的JavaScript语言等等. Python ...
- andriod开发增加一个菜单
第一步: E:\01.prj\pyscrapy\Cet4\res\menu\main.xml <menu xmlns:android="http://schemas.android ...