题目描述

顺利通过了黄药师的考验,下面就可以尽情游览桃花岛了!

你要从桃花岛的西头开始一直玩到东头,然后在东头的码头离开。可是当你游玩了一次后,发现桃花岛的景色实在是非常的美丽!!!于是你还想乘船从桃花岛东头的码头回到西头,再玩一遍,但是桃花岛有个规矩:你可以游览无数遍,但是每次游玩的路线不能完全一样。

我们把桃花岛抽象成了一个图,共\(n\)个点代表路的相交处,\(m\)条边表示路,边是有向的(只能按照边的方向行走),且可能有连接相同两点的边。输入保证这个图没有环,而且从西头到东头至少存在一条路线。两条路线被认为是不同的当且仅当它们所经过的路不完全相同。

你的任务是:把所有不同的路线游览完一共要花多少时间?

输入输出格式

输入格式:

第\(1\)行为\(5\)个整数:\(n、m、s、t、t0\),分别表示点数,边数,岛西头的编号,岛东头的编号(编号是从1到n)和你乘船从岛东头到西头一次的时间。

以下\(m\)行,每行3个整数:\(x、y、t\),表示从点x到点y有一条行走耗时为t的路。

每一行的多个数据之间用一个空格隔开,且:\(2<=n<=10000; 1<=m<=50000;t<=10000;t0<=10000\)

输出格式:

假设总耗时为\(total\),则输出\(total\) \(mod\) \(10000\)的值(\(total\)对\(10000\)取余)。

输入输出样例

输入样例#1:

3 4 1 3 7
1 2 5
2 3 7
2 3 10
1 3 15

输出样例#1:

56

说明

样例解释

共有\(3\)条路径可以从点\(1\)到点\(3\),分别是\(1-2-3,1-2-3,1-3\)。

时间计算为:\((5+7)+7 +(5+10)+7 +(15)=56\)

题解

我们定义

\(cnt[i]\)表示到点\(i\)的次数;

\(dis[i]\)表示到点\(i\)的总路径长度。

所以\(ans=dis[t]+(cnt[t]-1)*t0\)

如何去转移\(cnt\)和\(dis\)数组呢

\(dfs\)一遍不就行了

考虑一条边从\(u\)到\(v\),边权为\(w\)

\(dis[v]=dis[v]+dis[u]+cnt[u]*w;\)

\(cnt[v]+=cnt[u];\)

初始化:\(cnt[s]=1\)

但是绝对不能直接\(dfs\)去遍历,只能得\(20\)分。

我一开始就直\(dfs\),还是太菜了(20分)。

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cctype>
#define ll long long
#define R register
#define mod 10000
#define N 50005
using namespace std;
template<typename T>inline void read(T &a){
char c=getchar();T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
int n,m,s,t,ti,tot,h[N];
ll cnt[N],dis[N];
struct node{
int nex,to,dis;
}edge[N<<1];
inline void add(R int u,R int v,R int w){
edge[++tot].nex=h[u];
edge[tot].to=v;
edge[tot].dis=w;
h[u]=tot;
}
inline void dfs(R int x){
for(R int i=h[x];i;i=edge[i].nex){
R int xx=edge[i].to;
(dis[xx]+=dis[x]+cnt[x]*edge[i].dis)%=mod;
(cnt[xx]+=cnt[x])%=mod;
dfs(xx);
}
}
int main(){
read(n);read(m);read(s);read(t);read(ti);
for(R int i=1,u,v,w;i<=m;i++){
read(u);read(v);read(w);
if(u!=v)add(u,v,w);
}
cnt[s]=1;
dfs(s);
printf("%lld\n",(dis[t]+(cnt[t]-1)*ti)%mod);
return 0;
}

为什么这样不对??

因为有一些点的信息我们还没有收集全面就用它去更新其他点了。

如何解决(感谢\(wtx\)大佬指导),

拓扑排序呀,当一个点入度为0时就说明已经没有点可以去更新它了,说明它的信息收集已经完全了。

正确的代码:

#include<iostream>
#include<algorithm>
#include<cstdio>
#include<cstring>
#include<cctype>
#define ll long long
#define R register
#define mod 10000
#define N 50005
using namespace std;
template<typename T>inline void read(T &a){
char c=getchar();T x=0,f=1;
while(!isdigit(c)){if(c=='-')f=-1;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+c-'0';c=getchar();}
a=f*x;
}
int n,m,s,t,ti,tot,h[N],in[N];
ll cnt[N],dis[N];
struct node{
int nex,to,dis;
}edge[N<<1];
inline void add(R int u,R int v,R int w){
edge[++tot].nex=h[u];
edge[tot].to=v;
edge[tot].dis=w;
h[u]=tot;
in[v]++;
}
inline void dfs(R int x){
for(R int i=h[x];i;i=edge[i].nex){
R int xx=edge[i].to;
(dis[xx]+=dis[x]+cnt[x]*edge[i].dis)%=mod;
(cnt[xx]+=cnt[x])%=mod;
--in[xx];//拓扑排序
if(!in[xx])dfs(xx);
}
}
int main(){
read(n);read(m);read(s);read(t);read(ti);
for(R int i=1,u,v,w;i<=m;i++){
read(u);read(v);read(w);
if(u!=v)add(u,v,w);
}
cnt[s]=1;
dfs(s);
printf("%lld\n",(dis[t]+(cnt[t]-1)*ti)%mod);
return 0;
}

【洛谷1685】游览 拓扑排序+DP的更多相关文章

  1. 洛谷P1073 Tarjan + 拓扑排序 // 构造分层图

    https://www.luogu.org/problemnew/show/P1073 C国有 n n个大城市和 mm 条道路,每条道路连接这 nn个城市中的某两个城市.任意两个城市之间最多只有一条道 ...

  2. 洛谷P3244 落忆枫音 [HNOI2015] 拓扑排序+dp

    正解:拓扑排序+dp 解题报告: 传送门 我好暴躁昂,,,怎么感觉HNOI每年总有那么几道题题面巨长啊,,,语文不好真是太心痛辣QAQ 所以还是要简述一下题意,,,就是说,本来是有一个DAG,然后后来 ...

  3. POJ 3249 拓扑排序+DP

    貌似是道水题.TLE了几次.把所有的输入输出改成scanf 和 printf ,有吧队列改成了数组模拟.然后就AC 了.2333333.... Description: MR.DOG 在找工作的过程中 ...

  4. [NOIP2017]逛公园 最短路+拓扑排序+dp

    题目描述 给出一张 $n$ 个点 $m$ 条边的有向图,边权为非负整数.求满足路径长度小于等于 $1$ 到 $n$ 最短路 $+k$ 的 $1$ 到 $n$ 的路径条数模 $p$ ,如果有无数条则输出 ...

  5. 【BZOJ-1194】潘多拉的盒子 拓扑排序 + DP

    1194: [HNOI2006]潘多拉的盒子 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 456  Solved: 215[Submit][Stat ...

  6. 【BZOJ5109】[CodePlus 2017]大吉大利,晚上吃鸡! 最短路+拓扑排序+DP

    [BZOJ5109][CodePlus 2017]大吉大利,晚上吃鸡! Description 最近<绝地求生:大逃杀>风靡全球,皮皮和毛毛也迷上了这款游戏,他们经常组队玩这款游戏.在游戏 ...

  7. bzoj1093[ZJOI2007]最大半连通子图(tarjan+拓扑排序+dp)

    Description 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:?u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u ...

  8. 【bzoj4011】[HNOI2015]落忆枫音 容斥原理+拓扑排序+dp

    题目描述 给你一张 $n$ 个点 $m$ 条边的DAG,$1$ 号节点没有入边.再向这个DAG中加入边 $x\to y$ ,求形成的新图中以 $1$ 为根的外向树形图数目模 $10^9+7$ . 输入 ...

  9. 【bzoj1093】[ZJOI2007]最大半连通子图 Tarjan+拓扑排序+dp

    题目描述 一个有向图G=(V,E)称为半连通的(Semi-Connected),如果满足:对于u,v∈V,满足u→v或v→u,即对于图中任意两点u,v,存在一条u到v的有向路径或者从v到u的有向路径. ...

随机推荐

  1. (转)CSS布局-负边距-margin

    css中的负边距(negative margin)是布局中的一个常用技巧,只要运用得合理常常会有意想不到的效果.很多特殊的css布局方法都依赖于负边距,所以掌握它的用法对于前端的同学来说,那是必须的. ...

  2. Coins and Queries(codeforce 1003D)

    Polycarp has nn coins, the value of the i-th coin is aiai . It is guaranteed that all the values are ...

  3. For input String:"" 异常记录

    开发中遇到  For input String:""  这个异常,一般为在将字符串转换为数字类型时, 出现转换的异常,常见的比如输入的字符串为空串

  4. JanusGraph :Cassandra作为存储后端的情况下,JanusGraph的安装方法

    Cassandra作为存储后端的情况下,JanusGraph的安装方法 Cassandra作为存储后端的情况下,JanusGraph的安装分为四种方式. 分别是: 1.本地服务器模式(这里的服务器指的 ...

  5. Ubuntu16.04安装之后的几个设置

    Ubuntu16.04安装之后的几个设置 Ubuntu16.04界面很漂亮,但是安装之后,需要做如下几个简单的设置,这样用的时候会更加顺畅. 1.中文支持 在右上角有一个齿轮,点击->Syste ...

  6. 【CF#338D】GCD Table

    [题目描述] 有一张N,M<=10^12的表格,i行j列的元素是gcd(i,j) 读入一个长度不超过10^4,元素不超过10^12的序列a[1..k],问是否在某一行中出现过 [题解] 要保证g ...

  7. C#实现访问网络共享文件夹

    C#实现访问网络共享文件夹,使用 WNetAddConnection2A 和 WNetCancelConnection2A. 在目标服务器建立共享文件夹,建立访问账号test; public enum ...

  8. 正则表达式复习 (?<=) (?=)

    1.首先值得一说的是"<" 和">" 不是元字符 "."是元字符 ,连接字符"-",即使在字符组内部也不一定 ...

  9. oracle数据库创建表

    实际工作中,在数据库中创建表是经常会用到的.我们今天呢?主要给大家来分享一下在数据库如何通过sql语句去创建表.其实,创建表很简单,只需要把数据库的数据类型和约束搞清楚就可以了,其他的就好说了.接下来 ...

  10. javascript总结16:数组array12

    1 Array 对象 作用:Array 对象用于在变量中存储多个值. 1.1 数组定义 var ary = new Array();//通过创建对象的方式创建数组 var ary1 = [];// 直 ...