HDU 3449 Consumer
这是一道依赖背包问题。
背包问题通常的解法都是由0/1背包拓展过来的,这道也不例外。
我最初想到的做法是,由于有依赖关系,先对附件做个DP,得到1-w的附件背包结果f[i]表示i花费得到的最大收益,然后把每个f[i]看成花费为i+c[i],收益为f[i]的物品依次做0/1背包。
显然,问题是物品数目过多,复杂度为w*w,无法承受。
同时,此问题的主件收益为0这一点也需要细加考虑,由于主件收益为0,其实际上对每个附件方案的影响只有花费+c[i],这样考虑下来我们只需要对附件进行DP,然后附加上+c[i]的影响即可。
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<cstdlib>
using namespace std;
#define ll long long
#define up(i,j,k) for(int i=(j);i<=(k);i++)
#define cmin(a,b) a=min(a,b)
#define cmax(a,b) a=max(a,b)
#define pii pair<int,int>
const int maxn=,inf=1e9,mod=;
int read(){
int ch=getchar(),x=,f=;
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')x=(x<<)+(x<<)+ch-'',ch=getchar();
return f*x;
}
int n,w;
int f[maxn],g[maxn],p[],m[];
int c[],v[];
int main(){
freopen("chad.in","r",stdin);
freopen("chad.out","w",stdout);
while(scanf("%d%d",&n,&w)!=EOF){
memset(f,,sizeof(f));
memset(g,,sizeof(g));
up(i,,n){
scanf("%d%d",&p[i],&m[i]);
up(j,,m[i]){
scanf("%d%d",&c[j],&v[j]);
for(int k=w;k>=c[j];k--)
g[k]=max(g[k-c[j]]+v[j],g[k]);
}
up(j,p[i],w)f[j]=max(f[j],g[j-p[i]]);
memcpy(g,f,sizeof(f));
} printf("%d\n",f[w]);
}
return ;
}
事实上,第一种方法也是可行的,只不过,需要先对g数组进行一个(小优化)。
#include<iostream>
#include<cstring>
#include<string>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cmath>
#include<vector>
#include<set>
#include<map>
#include<cstdlib>
using namespace std;
#define ll long long
#define up(i,j,k) for(int i=(j);i<=(k);i++)
#define cmin(a,b) a=min(a,b)
#define cmax(a,b) a=max(a,b)
#define pii pair<int,int>
const int maxn=,inf=1e9,mod=;
int read(){
int ch=getchar(),x=,f=;
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<='')x=(x<<)+(x<<)+ch-'',ch=getchar();
return f*x;
}
int n,w;
int f[maxn],g[maxn],p[],m[];
int c[],v[],head,q[maxn];
int main(){
freopen("chad.in","r",stdin);
freopen("chad.out","w",stdout);
while(scanf("%d%d",&n,&w)!=EOF){
memset(f,,sizeof(f));
memset(g,,sizeof(g));
up(i,,n){
scanf("%d%d",&p[i],&m[i]);
memset(g,,sizeof(g));
up(j,,m[i])scanf("%d%d",&c[j],&v[j]);
up(j,,m[i])for(int k=w;k>=c[j];k--)
g[k]=max(g[k-c[j]]+v[j],g[k]);
head=;
for(int j=;j<=w;j++)
if(!j||g[j]!=g[j-])q[++head]=j;
for(int j=w;j>=p[i];j--){
for(int k=;q[k]+p[i]<=j&&k<=head;k++)
f[j]=max(f[j],f[j-p[i]-q[k]]+g[q[k]]);
}
}
printf("%d\n",f[w]);
}
return ;
}
HDU 3449 Consumer的更多相关文章
- hdu 3449 Consumer (依赖01背包)
题目: 链接:pid=3449">点击打开链接 题意: 思路: dp[i][j]表示前i个箱子装j钱的材料可以得到的最大价值. 代码: #include<iostream> ...
- HDU 3449 Consumer (背包问题之有依赖背包)
题目链接 Problem Description FJ is going to do some shopping, and before that, he needs some boxes to ca ...
- HDU 1561&HDU 3449 一类简单依赖背包问题
HDU 1561.这道是树形DP了,所谓依赖背包,就是选A前必须选B,这样的问题.1561很明显是这样的题了.把0点当成ROOT就好,然后选子节点前必须先选根,所以初始化数组每一行为该根点的值.由于多 ...
- HDu 3449 (有依赖的01背包) Consumer
题意: 有n件物品,对应有不同的价格和价值,这是典型的01背包.但现在有了一个限制,要买物品先买能装这件物品的特定的盒子,盒子的价值为0 代码理解得还不是太好,感觉这是一个“二重”的01背包.首先假设 ...
- hdu 3449 有依赖性的01背包
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=3449 Consumer Description FJ is going to do so ...
- hdu 3449
有依赖的背包,转化成01背包来做: #include<iostream> #include<cstdio> #include<cstring> #include&l ...
- hdu 3449 (有依赖的01背包)
依赖背包 事实上,这是一种树形DP,其特点是每个父节点都需要对它的各个儿子的属性进行一次DP以求得自己的相关属性. fj打算去买一些东西,在那之前,他需要一些盒子去装他打算要买的不同的物品.每一个盒子 ...
- HDU 3449 依赖背包
这道题虽然水水的,但是还是成功地给我增加了10多个WA. 最开始拿着题,一看,依赖背包嘛~直接DFS树形DP嗨起来,甚至连内存都没有算一下,3MLE: 然后又仔细看了一下题,没有必要用树形背包来做嘛, ...
- 【DP_背包专题】 背包九讲
这段时间看了<背包九讲>,在HUST VJUDGE上找到了一个题单,挑选了其中16道题集中做了下,选题全部是HDU上的题,大多是简单题.目前做了点小总结,大概提了下每道题的思路重点部分,希 ...
随机推荐
- 第二百零三节,jQuery EasyUI,Window(窗口)组件
jQuery EasyUI,Window(窗口)组件 学习要点: 1.加载方式 2.属性列表 3.事件列表 4.方法列表 本节课重点了解 EasyUI 中 Window(窗口)组件的使用方法,这个组件 ...
- bitset在acm中的应用
ps:最近碰到一些用bitset优化常数的题目,以前也有接触但是都没有记下来,所以来写一篇博文 记录以后碰到的类似的题目. 应用一: 优化boolean multiplication 在做dp的时候, ...
- boot2docker里报"no space left on device" error的解决方法
docker中pull远程image时:报 no space left on device virtualbox中调大虚拟内存即可.. 之前调的硬盘大小...
- 从git上拉下来的严选weex项目demo
项目地址 https://github.com/zwwill/yanxuan-weex-demo 在package.json里"author"之类后面加上 "privat ...
- ios 蓝牙相关
ios蓝牙开发项目实战 -(附小米手环实例) 前言 最近一直在开发关于蓝牙的功能,本来是不想写这一篇文章,因为网上关于ios蓝牙开发的文章实在太多了,成吨成吨的文章出现,但是很遗憾都只是一些皮 ...
- Android开发:《Gradle Recipes for Android》阅读笔记(翻译)4.1——编写自己的任务
问题: 你想用自己的任务定制gradle的构建过程. 解决方案: 在gradle的build文件里面增加task元素.用Android插件支持的extra属性使得开发更容易. 讨论: Gradle的D ...
- CodeIgniter框架——知识要点汇总
NO1.学习要点: 一.CodeIgniter 框架的简介 二.CodeIgniter 框架的安装 三.CodeIgniter 框架的目录结构分析 四.CodeIgniter 框架是如何工作的? 五. ...
- SharePoint服务器端对象模型 之 访问网站和列表数据(Part 2)
(二)列表(SPList) 列表是SharePoint中最为重要的数据容器,我们一般保存在SharePoint中的所有数据,都是保存在列表中(文档库也是一种列表),因此列表对象在SharePoint的 ...
- GridView中给DropDownList动态绑定数据,及选择列表值后自动更新数据库
protected void sgvFile1_RowDataBound(object sender, GridViewRowEventArgs e) { DropDownList ddlAM = ( ...
- 类与类之间关系,用C#和JavaScript体现
前言 在面向对象中,类之间的关系有六种,分别是: 关联关系(Association) 泛化关系(Generalization) 依赖(Dependency) 聚合(Aggregation) 组合(Co ...