【洛谷 P1651】 塔 (差值DP)
题目链接
题意:\(n\)个木块放到两个塔里,每个木块可放可不放,使得两塔高度相同且高度最大,求最大高度。
这个差值\(DP\)的思维难度还是很大的,没想出来,我就打了一个\(dfs\)骗了好像\(20\)还是\(30\)分吧(看来搜索也写挂)。
正解是\(DP\),\(f[i][j]\)表示前\(i\)块木块使得两个塔的高度差为\(k\)时高度最大的那个是什么(神奇的状态)
那么无非就\(4\)种情况:
1、第\(i\)块不放:\(f[i][j]=f[i-1][j]\)
2、第\(i\)块放到矮的上面,矮的仍然矮:\(f[i][j]=f[i-1][j+a[i]]\)
3、第\(i\)块放到高的上面,高的当然高:\(f[i][j]=f[i-1][j-a[i]]+a[i]\)
4、第\(i\)块放到矮的上面,矮的变高的:\(f[i][j]=f[i-1][a[i]-j]+j\)
可以发现,\(f[i]\)的取值仅与\(f[i-1]\)有关,于是第一维是可以滚掉的。
#include <cstdio>
#include <cstring>
#define Open(s) freopen(s".in","r",stdin);freopen(s".out","w",stdout);
#define Close fclose(stdin);fclose(stdout);
const int MAXN = 55;
const int MAX = 500010;
int dp[MAX][2];
inline int max(int a, int b){
return a > b ? a : b;
}
int n, s[MAXN], sum;
int main(){
Open("tower");
scanf("%d", &n);
for(int i = 1; i <= n; ++i)
scanf("%d", &s[i]), sum += s[i];
memset(dp, 128, sizeof dp);
dp[0][0] = dp[0][1] = 0;
for(int i = 1; i <= n; ++i)
for(int j = sum; ~j; --j){
dp[j][i%2] = dp[j][!(i%2)];
if(j + s[i] <= sum) dp[j][i%2] = max(dp[j][i%2], dp[j + s[i]][!(i%2)]);
if(j - s[i] >= 0) dp[j][i%2] = max(dp[j][i%2], dp[j - s[i]][!(i%2)] + s[i]);
if(j < s[i]) dp[j][i%2] = max(dp[j][i%2], dp[s[i] - j][!(i%2)] + j);
}
printf("%d\n", !dp[0][n%2] ? -1 : dp[0][n%2]);
Close;
return 0;
}
【洛谷 P1651】 塔 (差值DP)的更多相关文章
- 洛谷 P5279 - [ZJOI2019]麻将(dp 套 dp)
洛谷题面传送门 一道 dp 套 dp 的 immortal tea 首先考虑如何判断一套牌是否已经胡牌了,考虑 \(dp\).我们考虑将所有牌按权值大小从大到小排成一列,那我们设 \(dp_ ...
- Lightning Conductor 洛谷P3515 决策单调性优化DP
遇见的第一道决策单调性优化DP,虽然看了题解,但是新技能√,很开森. 先%FlashHu大佬,反正我是看了他的题解和精美的配图才明白的,%%%巨佬. 废话不多说,看题: 题目大意 已知一个长度为n的序 ...
- 【洛谷4933】大师(DP)
题目: 洛谷4933 分析: (自己瞎yy的DP方程竟然1A了,写篇博客庆祝一下) (以及特斯拉电塔是向Red Alert致敬吗233) 这里只讨论公差不小于\(0\)的情况,小于\(0\)的情况进行 ...
- 洛谷2344 奶牛抗议(DP+BIT+离散化)
洛谷2344 奶牛抗议 本题地址:http://www.luogu.org/problem/show?pid=2344 题目背景 Generic Cow Protests, 2011 Feb 题目描述 ...
- 洛谷P1541 乌龟棋(四维DP)
To 洛谷.1541 乌龟棋 题目背景 小明过生日的时候,爸爸送给他一副乌龟棋当作礼物. 题目描述 乌龟棋的棋盘是一行N个格子,每个格子上一个分数(非负整数).棋盘第1格是唯一的起点,第N格是终点,游 ...
- 【洛谷】P1052 过河【DP+路径压缩】
P1052 过河 题目描述 在河上有一座独木桥,一只青蛙想沿着独木桥从河的一侧跳到另一侧.在桥上有一些石子,青蛙很讨厌踩在这些石子上.由于桥的长度和青蛙一次跳过的距离都是正整数,我们可以把独木桥上青蛙 ...
- 【题解】洛谷P1052 [NOIP2005TG] 过河(DP+离散化)
题目来源:洛谷P1052 思路 一开始觉得是贪心 但是仔细一想不对 是DP 再仔细一看数据不对 有点大 如果直接存下的话 显然会炸 那么就需要考虑离散化 因为一步最大跳10格 那么我们考虑从1到10都 ...
- 洛谷1736(二维dp+预处理)
洛谷1387的进阶版,但很像. 1387要求是“全为1的正方形”,取dp[i][j] = min(dp[i-1][j-1], min(dp[i-1][j], dp[i][j-1]))吧?这个有“只有对 ...
- C++ 洛谷 2014 选课 from_树形DP
洛谷 2014 选课 没学树形DP的,看一下. 首先要学会多叉树转二叉树. 树有很多种,二叉树是一种人人喜欢的数据结构,简单而且规则.但一般来说,树形动规的题目很少出现二叉树,因此将多叉树转成二叉树就 ...
随机推荐
- 根据生产场景对Linux系统进行分区
转自:http://oldboy.blog.51cto.com/2561410/629558 老鸟谈生产场景如何对linux系统进行分区? █ 前言: 我们买房子时,会考虑1室1厅,2室1厅, ...
- 1003 Emergency (25 分)(求最短路径)
给出N个城市,m条无向边.每个城市中都有一定数目的救援小组,所有边的边权已知.现在给出起点和终点,求从起点到终点的最短路径条数及最短经上的救缓小组数目只和.如果有多条最短路径,则输出数目只和最大的 D ...
- 用tensorflow实现自然语言处理——基于循环神经网络的神经语言模型
自然语言处理和图像处理不同,作为人类抽象出来的高级表达形式,它和图像.声音不同,图像和声音十分直觉,比如图像的像素的颜色表达可以直接量化成数字输入到神经网络中,当然如果是经过压缩的格式jpeg等必须还 ...
- ipfs补充命令
ipfs cat之后 将文件保存在指定的路径下 添加都文件夹下面 ipfs files cp /ipfs/QmSkyNME8YqndkNq7ovKphpYwjk2hEQ61P1pjSckqLP6zt ...
- 实战小项目之基于yolo的目标检测web api实现
上个月,对微服务及web service有了一些想法,看了一本app后台开发及运维的书,主要是一些概念性的东西,对service有了一些基本了解.互联网最开始的构架多是cs构架,浏览器兴起以后,变成了 ...
- 官方文档 恢复备份指南八 RMAN Backup Concepts
本章内容 Consistent and Inconsistent RMAN Backups Online Backups and Backup Mode Backup Sets Image Copie ...
- MySQL 5.6查看数据库的大小
1. use information_schema; 2. select concat(round(sum(data_length/1024/1024),2),'MB') as data from t ...
- python的三种控制流
什么是控制流 >>控制代码执行顺序的语句 >>python中有哪些控制流 >>顺序结构 >>> a = 7 >>> print( ...
- 第四次JAVA作业
public class TvbDog { public static void main(String[] args) { Dog per=new Dog("陈狗"," ...
- vue-cli配置jquery 以及jquery第三方插件
只使用jquery: 1. cnpm install jquery --save 2. cnpm install @types/jquery --save-dev (不使用ts的不需要安装此声明 ...