2018牛客多校第一场 B.Symmetric Matrix
题意:
构造一个n*n的矩阵,使得Ai,i = 0,Ai,j = Aj,i,Ai,1+Ai,2+...+Ai,n = 2。求种类数。
题解:
把构造的矩阵当成邻接矩阵考虑。
那么所有点的度数都为2,且存在重边但不存在自环。这种情况的图为多个环,即每个点都在且仅在一个环里。
考虑每次加一个点来递推dp[]。假设当前是第n个点,从前n-1个点中筛出(1~n-3)个点和第n个点形成环。
设n-1个点中保留k个点,即筛出n-1-k个点和第n个点形成环。
递推方程为:f(n) = (n-1)f(n-2)+sigma(k:2->n-3)C(n-1,k)f(k)(n-1-k)!/2;
其中(n-1)f(n-2)为从n-1个点中筛出1个点的情况。C(n-1,k)为从n-1个点中筛出k个点的组合数(k表示保留的个数)。(n-1-k)!表示筛出的n-1-k个数与第n个数一共n-k个数构成环的种数。
/2是因为去掉像1 2 3 4 和 1 4 3 2这种对称的情况。但是当k=1时就不用/2所以就把k=1的情况先写出来。
然后就是化简递推方程。
C(n-1,k)f(k)(n-1-k)!/2 = f(k)(n-1)!/k!/2
f(n) = (n-1)f(n-2)+sigma(k:2->n-3)f(k)(n-1)!/k!/2
(n-1)f(n-1) = (n-1)(n-2)f(n-3)+sigma(k:2->n-4)f(k)(n-1)!/k!/2
减一下就变成:f(n) = (n-1)f(n-1)+(n-1)f(n-2)-(n-1)(n-2)f(n-3)/2
#include <bits/stdc++.h>
using namespace std;
const int N = 1e5+;
typedef long long ll;
int n, m;
int dp[N];
int main() {
while(~scanf("%d%d", &n, &m)) {
dp[] = ; dp[] = %m; dp[] = %m;
for(int i = ; i <= n; i++) dp[i] = ((1ll*(i-)*dp[i-]%m+1ll*(i-)*dp[i-]%m-1ll*(i-)*(i-)/*dp[i-]%m)%m+m)%m;
printf("%d\n", dp[n]);
}
}
2018牛客多校第一场 B.Symmetric Matrix的更多相关文章
- 2018牛客多校第一场 A.Monotonic Matrix
题意: 给一个n*m的矩阵赋值(0,1,2).使得每个数都不小于它左面和上面的数. 题解: 构建0和1的轮廓线.对于单独的轮廓线,共需要往上走n步,往右走m步.有C(n+m,n)种方式. 两个轮廓线的 ...
- 2018牛客多校第一场 D.Two Graphs
题意: n个点,m1条边的图E1,n个点,m2条边的图E2.求图E2有多少子图跟图E1同构. 题解: 用STL的全排列函数next_permutation()枚举映射.对于每一种映射枚举每一条边判断合 ...
- 2018牛客多校第一场 E-Removal【dp】
题目链接:戳这里 转自:戳这里 题意:长度为n的序列,删掉m个数字后有多少种不同的序列.n<=10^5,m<=10. 题解:dp[i][j]表示加入第i个数字后,总共删掉j个数字时,有多少 ...
- 2019牛客多校第一场 I Points Division(动态规划+线段树)
2019牛客多校第一场 I Points Division(动态规划+线段树) 传送门:https://ac.nowcoder.com/acm/contest/881/I 题意: 给你n个点,每个点有 ...
- 牛客多校第一场 B Inergratiion
牛客多校第一场 B Inergratiion 传送门:https://ac.nowcoder.com/acm/contest/881/B 题意: 给你一个 [求值为多少 题解: 根据线代的知识 我们可 ...
- 2019年牛客多校第一场B题Integration 数学
2019年牛客多校第一场B题 Integration 题意 给出一个公式,求值 思路 明显的化简公式题,公式是分母连乘形式,这个时候要想到拆分,那如何拆分母呢,自然是裂项,此时有很多项裂项,我们不妨从 ...
- 2019牛客多校第一场E ABBA(DP)题解
链接:https://ac.nowcoder.com/acm/contest/881/E 来源:牛客网 ABBA 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 524288K,其他语 ...
- 牛客多校第一场 A Equivalent Prefixes 单调栈(笛卡尔树)
Equivalent Prefixes 单调栈(笛卡尔树) 题意: 给出两个数组u,v,每个数组都有n个不同的元素,RMQ(u,l,r)表示u数组中[l,r]区间里面的最小值标号是多少,求一个最大的m ...
- 2019牛客多校第一场A-Equivalent Prefixes
Equivalent Prefixes 传送门 解题思路 先用单调栈求出两个序列中每一个数左边第一个小于自己的数的下标, 存入a[], b[].然后按照1~n的顺序循环,比较 a[i]和b[i]是否相 ...
随机推荐
- docker和docker compose常用操作命令
首先区分一下docker中几个概念 Image:镜像,相当于一个root文件系统,不包含任何动态数据 Container:容器,镜像运行时的实体,实质是进程,容器进程运行于属于自己的独立的命名空间 d ...
- Java学习笔记十一:Java中的方法
Java中的方法 一:什么是方法: 所谓方法,就是用来解决一类问题的代码的有序组合,是一个功能模块. 学过C语言或者其他语言的应该都知道函数这个东西,在Java中,其实方法就是函数,只不过叫法不同,在 ...
- .NET CORE LOG
.NET CORE LOG 合格的应用程序不仅要求运行的高效和计算的准确,稳定及可靠性也要得到满足,同事,系统的可维护性也相当重要.谈及到可维护性,就必须涉及到系统运行状态的监控和异常的快速定位与跟踪 ...
- HDU1209:Clock
参考:https://blog.csdn.net/libin56842/article/details/8990530 https://blog.csdn.net/u011479875/article ...
- OVERLAY(文字の上書き)
OVERLAY 命令により.文字列が別の文字列によって上書きされます. OVERLAY c1 WITH c2 [ONLY str]. この命令により.項目 c1 のすべての位置のうち.str の中に出 ...
- 解析车辆VIN码识别(车架号识别)系统
很多人在购买车辆的时候,只关注性能.外观.内饰等,其实真正的内行是首先看车辆的VIN码,也叫车架号码. VIN码(车架号码)是一辆车的唯一身份证明,一般在车辆的挡风玻璃处,有的在车辆防火墙上,或B柱铭 ...
- Wannafly挑战赛21:C - 大水题
链接:Wannafly挑战赛21:C - 大水题 题意: 现在给你N个正整数ai,每个数给出一“好数程度” gi(数值相同但位置不同的数之间可能有不同的好数程度).对于在 i 位置的数,如果有一在j位 ...
- CSS层叠样式表的解释
css: 在标签上设置style属性css注释: /*z注释内容*/css样式的编写位置: 1.在标签的的style属性里 2.在head里面,style标签中写样式 ...
- C++内置类型如何存放于计算机内存中
摘要:内置类型的机器实现.字/字节/比特.内存 一.概念 计算机以比特序列存储数据,每个比特非0即1,如:00011011011100010110010000111011... 二.计算机以块来处理内 ...
- 软件工程项目组Z.XML会议记录 2013/09/25
软件工程项目组Z.XML会议记录 [例会时间]2013年9月25日周三21:30-22:10 [例会形式]小组讨论 [例会地点]三号公寓楼会客厅 [例会主持]李孟 [会议记录]肖俊鹏 会议整体流程 签 ...