【XSY2703】置换 数学 置换 DP
题目描述
对于置换\(p\),定义\(f(p)\)为最小的正整数\(k\),使得\(p^k\)为恒等置换。
你需要求对于所有的\(n\)元素置换\(p\),\(f^2(p)\)的平均值。
\(n\leq 200\)
题解
考虑把置换拆成很多个循环。
\(f(p)\)就是所有循环的长度的\(lcm\)
可以考虑DP,设\(f_{i,j}\)为放了\(i\)个位置,当前所有循环长度的\(lcm\)的状态为\(j\)(每个质因子的最高次幂是多少)。
但是状态数会很多
有一个微小的技巧,考虑到每个循环长度的质因子最多只有一个\(>\sqrt n\),那么可以把最大值因子相同的项拿出来一起处理,小的质因子就压成状态。
这个技巧很常见,比如说这道题NOI2015寿司晚宴。
这样状态数就只有不到\(5000\)个了。
当然,可以把不存在的状态删掉,就只剩下\(2000\)个了。
转移的话,设当前已经放了\(i\)个数,每次枚举放几个循环\(j\)(这些循环的长度相同),每个循环的长度为\(k\),那么方案数就是
\]
具体来说,第一次放的位置的数是\(\binom{n-i}{k}\),第二次是\(\binom{n-i-k}{k}\),以此类推。每个循环的方案数是\((k-1)!\)。最后方案可能会重复,就要除以\(l!\)。
时间复杂度:\(状态数O(n^2\log n\times 状态数)\)
代码
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<utility>
using namespace std;
typedef long long ll;
typedef pair<int,int> pii;
int p;
int fac[210];
int inv[210];
int ifac[210];
int n;
int getc(int x,int y)
{
if(x<y)
return 0;
if(y<0)
return 0;
return fac[x]*ifac[y]%p*ifac[x-y]%p;
}
void add(int &a,int b)
{
a=(a+b)%p;
}
int f[2100][210];
int g[2100][210];
struct num
{
int id,x;
int s1,s2,s3,s4,s5,s6;
};
num a[210];
int pri[]={0,2,3,5,7,11,13};
int cmp(num a,num b)
{
return a.x<b.x;
}
int p1[]={0,2,4,8,16,32,64,128};
int p2[]={0,3,9,27,81};
int p3[]={0,5,25,125};
int p4[]={0,7,49};
int p5[]={0,11,121};
int p6[]={0,13,169};
int p21[]={1,2,4,8,16,32,64,128};
int p22[]={1,3,9,27,81};
int p23[]={1,5,25,125};
int p24[]={1,7,49};
int p25[]={1,11,121};
int p26[]={1,13,169};
int id[8][5][4][3][3][3];
struct node
{
int a1,a2,a3,a4,a5,a6;
int s;
};
node c[2100];
int s[210][210];
int main()
{
#ifndef ONLINE_JUDGE
freopen("c.in","r",stdin);
freopen("c.out","w",stdout);
#endif
scanf("%d%d",&n,&p);
int i1,i2,i3,i4,i5,i6;
int cnt=0;
for(i1=0;i1<=7;i1++)
for(i2=0;i2<=4;i2++)
for(i3=0;i3<=3;i3++)
for(i4=0;i4<=2;i4++)
for(i5=0;i5<=2;i5++)
for(i6=0;i6<=2;i6++)
if(p1[i1]+p2[i2]+p3[i3]+p4[i4]+p5[i5]+p6[i6]<=n)
{
cnt++;
c[cnt].a1=i1;
c[cnt].a2=i2;
c[cnt].a3=i3;
c[cnt].a4=i4;
c[cnt].a5=i5;
c[cnt].a6=i6;
c[cnt].s=(ll)p21[i1]*p22[i2]*p23[i3]*p24[i4]*p25[i5]*p26[i6]%p;
id[i1][i2][i3][i4][i5][i6]=cnt;
// printf("%04d %d %d %d %d %d %d\n",++cnt,i1,i2,i3,i4,i5,i6);
}
int i,j,k,l;
fac[0]=fac[1]=inv[0]=inv[1]=ifac[0]=ifac[1]=1;
for(i=2;i<=n;i++)
{
inv[i]=(ll)-p/i*inv[p%i]%p;
fac[i]=(ll)fac[i-1]*i%p;
ifac[i]=(ll)ifac[i-1]*inv[i]%p;
}
f[1][0]=fac[n];
for(i=1;i<=n;i++)
{
k=i;
while(k%2==0)
{
k/=2;
a[i].s1++;
}
while(k%3==0)
{
k/=3;
a[i].s2++;
}
while(k%5==0)
{
k/=5;
a[i].s3++;
}
while(k%7==0)
{
k/=7;
a[i].s4++;
}
while(k%11==0)
{
k/=11;
a[i].s5++;
}
while(k%13==0)
{
k/=13;
a[i].s6++;
}
a[i].x=k;
a[i].id=i;
}
sort(a+1,a+n+1,cmp);
for(i=1;i<=n;i++)
{
s[i][0]=1;
for(j=1;j<=n;j++)
s[i][j]=(ll)s[i][j-1]*ifac[a[i].id]%p*fac[a[i].id-1]%p;
for(j=1;j<=n;j++)
s[i][j]=(ll)s[i][j]*ifac[j]%p;
}
for(i=1;i<=n;i++)
{
if(a[i].x==1||i==1||a[i].x!=a[i-1].x)
memcpy(g,f,sizeof g);
for(l=cnt;l>=1;l--)
{
int a1=max(a[i].s1,c[l].a1);
int a2=max(a[i].s2,c[l].a2);
int a3=max(a[i].s3,c[l].a3);
int a4=max(a[i].s4,c[l].a4);
int a5=max(a[i].s5,c[l].a5);
int a6=max(a[i].s6,c[l].a6);
int v=id[a1][a2][a3][a4][a5][a6];
for(k=n;k>=0;k--)
if(g[l][k])
for(j=1;k+j*a[i].id<=n;j++)
add(g[v][k+a[i].id*j],(ll)g[l][k]*s[i][j]%p);
}
if(a[i].x==1||i==n||a[i].x!=a[i+1].x)
{
int b=a[i].x*a[i].x%p;
for(l=1;l<=cnt;l++)
for(k=1;k<=n;k++)
add(f[l][k],(ll)(g[l][k]-f[l][k])*b%p);
}
}
int ans=0;
for(l=1;l<=cnt;l++)
add(ans,(ll)f[l][n]*c[l].s%p*c[l].s%p);
ans=(ll)ans*ifac[n]%p;
ans=(ans+p)%p;
printf("%d\n",ans);
return 0;
}
【XSY2703】置换 数学 置换 DP的更多相关文章
- BZOJ_1025_[SCOI2009]游戏_DP+置换+数学
BZOJ_1025_[SCOI2009]游戏_DP+置换 Description windy学会了一种游戏.对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应.最开始windy把数字按 顺序1 ...
- hdu4623:crime 数学优化dp
鞍山热身赛的题,也是去年多校原题 题目大意: 求n个数的排列中满足相邻两个数互质的排列的数量并取模 当时的思路就是状压dp.. dp[i][state] state用二进制记录某个数是否被取走,i ...
- codeforces1097D Makoto and a Blackboard 数学+期望dp
题目传送门 题目大意: 给出一个n和k,每次操作可以把n等概率的变成自己的某一个因数,(6可以变成1,2,3,6,并且概率相等),问经过k次操作后,期望是多少? 思路:数学和期望dp 好题好题!! ...
- 【Foreign】置换 [数论][置换]
置换 Time Limit: 10 Sec Memory Limit: 256 MB Description Input Output Sample Input 4 2 1 4 3 Sample O ...
- lightoj1038(数学期望dp)
题意:输入一个数N,N每次被它的任意一个因数所除 变成新的N 这样一直除下去 直到 N变为1 求变成1所期望的次数 解析: d[i] 代表从i除到1的期望步数:那么假设i一共有c个因子(包括1和本身) ...
- 【数学/贪心/DP】【CF1088E】 Ehab and a component choosing problem
Description 给定一棵 \(n\) 个节点的树,点有点权 \(a_u\),可能为负.现在请你在树上找出 \(k~(1~\leq~k~\leq~n)\) 个不相交集合,使得每个集合中的每对点都 ...
- 【BZOJ4872】[Shoi2017]分手是祝愿 数学+期望DP
[BZOJ4872][Shoi2017]分手是祝愿 Description Zeit und Raum trennen dich und mich. 时空将你我分开.B 君在玩一个游戏,这个游戏由 n ...
- BZOJ 1426: 收集邮票 数学期望 + DP
Description 有n种不同的邮票,皮皮想收集所有种类的邮票.唯一的收集方法是到同学凡凡那里购买,每次只能买一张,并且 买到的邮票究竟是n种邮票中的哪一种是等概率的,概率均为1/n.但是由于凡凡 ...
- [bzoj3462]DZY Loves Math II (美妙数学+背包dp)
Description Input 第一行,两个正整数 S 和 q,q 表示询问数量. 接下来 q 行,每行一个正整数 n. Output 输出共 q 行,分别为每个询问的答案. Sample Inp ...
随机推荐
- xadmin后台页面的自定制
01-自定制页面 注:最近找到了更好的解决办法:重写钩子函数版 https://www.cnblogs.com/pgxpython/p/10593507.html 需求背景:根据要实现的功能需求,x ...
- POJ - 2528 区间离散化,线段树区间修改,区间询问
这个题非常有意思的地方是,我们发现区间[1,4]和[5,8]是紧挨着的,因为这个的数代表的是一段区间,原本我们对于普通的离散, a[1]=1,a[2]=5,a[3]=6,a[4]=8;数组下标就是重新 ...
- c++入门之浅入浅出类——分享给很多想形象理解的人
引入类之前,首先引入一个古老的话题:类别,比如int ,char ,double:这些基本的类型方便了我们描述数据(请注意,这句话很重要),类型的存在就是为了方便我们描述数据的.而c++中的类其实作用 ...
- stark组件的分页,模糊查询,批量删除
1.分页组件高阶 2.整合展示数据showlist类 3.stark组件之分页 3.stark组件之search模糊查询 4.action批量处理数据 4.总结 1.分页组件高阶 1.分页的class ...
- Vue基础(ES6)
起步 1.扎实的HTML/CSS/Javascript基本功,这是前置条件. 2.不要用任何的构建项目工具,只用最简单的<script>,把教程里的例子模仿一遍,理解用法.不推荐上来就 ...
- Python之操作Excel
使用之前先导入三个模块: import xlwt #只能写Excel import xlrd #只能读Excel import xlutils #修改Excel,在原来的基础上修改 一.写EXCEL ...
- MySQL数据库性能优化思路与解决方法(二转)
原文:http://bbs.landingbj.com/t-0-242512-1.html 1.锁定表 尽管事务是维护数据库完整性的一个非常好的方法,但却因为它的独占性,有时会影响数据库的性能,尤其是 ...
- MySQL 的两个特殊属性 unsigned与 zerofill
1 unsigned unsigned 就是将数字类型无符号化, 例如 int 型的范围:-2^31 ~ 2^31 - 1,而unsigned int的范围:0 ~ 2^32.看起来unsigned ...
- Docker入门了解一下(第一篇)
最近在学docker.k8s什么的,看得脑子有点乱.从来没弄过在linux上搭建一个分布式的环境,所以对这些不太了解,还是从最简单的地方剖析吧. Docker学习传送:http://www.ityou ...
- JavaScript中forEach与each
forEach是ES5中操作数组的一种方法,主要功能是遍历数组,例如: var arr = [1,2,3,4]; arr.forEach(alert); 等价于: var arr = [1, 2, 3 ...