[HDU4635] Strongly connected
传送门:>Here<
题意:给出一张DAG,问最多添加几条边(有向)使其强连通分量个数大于1
解题思路
最少添加几条边使其强连通我们是知道的,非常简单,就是入度为0的点与出度为0的点的较大值
但是最多添加几条边使其依然不强连通,这个问题比较复杂——但这题的解法实在是太妙了
可以倒过来想:最多可以添加几条边?很显然,对于一张$n$个点的有向图,至多$n(n-1) / 2$条边,因此总共可以再添加$[n(n-1) / 2] - M$条边。但是添加满所有的边以后肯定会使整个图成为一个强连通分量,因此我们需要把多余的边减掉。怎么减掉呢?可以贪心地思考:由于要让强连通分量大于1且边数最多,最优的情况一定是两个强连通分量,这样加的边最多。
因此我们可以设最后留下两个强连通分量,其中第一个强连通分量内点的个数为$x$,第二个为$y$。很显然$x+y = n$因此最后的边的数量最多是$x*(x-1) + y*(y-1) + x*y$。最后之所以加上$x*y$,是因为我们可以把其中一个强连通分量统统向第二个强连通分量的每一个点连相同方向的边,总共可以连$x*y$条
我们可以化简刚才的式子:
$$x*(x-1) + y*(y-1) + x*y$$$$= x*x - x + y*y - y + x*y$$$$= (x+y)^2 - n - x*y$$$$= n^2 - n - x*y$$
由于$n^2 - n$肯定是确定的,为使边数最多,要让$x*y$尽量小
已知$x+y$的值是确定的,因此$x$和$y$的差一定是越大越好。也就是其中一个要尽量小。由于$x$和$y$分别都是强连通分量,我们可以先对原图进行缩点,然后找出最小的$x$进行计算
然而并不是每一个强连通分量都可以作为$x$的,由于根据我们前面的假设,只能有两个强连通分量,因此作为x的强连通分量在缩点完成后的DAG中不能既有入度又有出度,这样的话前后都包含了强连通分量,就一定不止两个了——换句话说,如果这样的$x$作为一个来计算的话,他往别人或别人往他那里连边的时候一定会形成环。
Code
注意有多组数据,一定要初始化
/*by DennyQi*/
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <queue>
#define r read()
#define Max(a,b) (((a)>(b))?(a):(b))
#define Min(a,b) (((a)<(b))?(a):(b))
using namespace std;
typedef long long ll;
const int MAXN = ;
const int INF = 0x3f3f3f3f;
const int MOD = ;
inline int read(){
int x = ; int w = ; register unsigned char c = getchar();
for(; c^'-' && (c < '' || c > ''); c = getchar());
if(c == '-') w = -, c = getchar();
for(; c >= '' && c <= ''; c = getchar()) x = (x<<) + (x<<) + c - '';
return x * w;
}
int T,N,M,x[MAXN],y[MAXN],Case;
int first[MAXN],nxt[MAXN],to[MAXN],num_edge;
int dfn[MAXN],low[MAXN],scc[MAXN],sta[MAXN],sccno[MAXN],amt[MAXN],rd[MAXN],cd[MAXN],top,scc_cnt,dfs_clock;
inline void Init(){
memset(first,,sizeof(first));
memset(nxt,,sizeof(nxt));
memset(to,,sizeof(to));
memset(dfn,,sizeof(dfn));
memset(low,,sizeof(low));
memset(sta,,sizeof(sta));
memset(sccno,,sizeof(sccno));
memset(amt,,sizeof(amt));
memset(rd,,sizeof(rd));
memset(cd,,sizeof(cd));
num_edge = ;
dfs_clock = ;
scc_cnt = ;
top = ;
}
inline void add(int u, int v){
to[++num_edge] = v;
nxt[num_edge] = first[u];
first[u] = num_edge;
}
void tarjan(int u){
dfn[u] = low[u] = ++dfs_clock;
sta[++top] = u;
int v;
for(int i = first[u]; i; i = nxt[i]){
v = to[i];
if(!dfn[v]){
tarjan(v);
low[u] = Min(low[u], low[v]);
}
else if(!sccno[v]){
low[u] = Min(low[u], dfn[v]);
}
}
if(dfn[u] == low[u]){
++scc_cnt;
while(){
sccno[sta[top]] = scc_cnt;
++amt[scc_cnt];
if(sta[top--] == u) break;
}
}
}
int main(){
// freopen(".in","r",stdin);
T=r;
while(T--){
++Case;
printf("Case %d: ", Case);
Init();
N=r,M=r;
for(int i = ; i <= M; ++i){
x[i]=r,y[i]=r;
add(x[i], y[i]);
}
for(int i = ; i <= N; ++i){
if(!dfn[i]){
tarjan(i);
}
}
/* for(int i = 1; i <= N; ++i){
printf("sccno[%d] = %d\n", i, sccno[i]);
}*/
if(scc_cnt == ){
printf("-1\n");
continue;
}
for(int i = ; i <= M; ++i){
if(sccno[x[i]] != sccno[y[i]]){
++rd[sccno[y[i]]];
++cd[sccno[x[i]]];
}
}
int _min = INF;
for(int i = ; i <= scc_cnt; ++i){
if(rd[i]!= && cd[i]!=) continue;
_min = Min(_min, amt[i]);
}
// printf("_min = %d\n", _min);
printf("%d\n", N*(N-) - _min*(N-_min) - M);
}
return ;
}
[HDU4635] Strongly connected的更多相关文章
- HDU-4635 Strongly connected 强连通,缩点
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4635 题意:给一个简单有向图(无重边,无自环),要你加最多的边,使得图还是简单有向图... 先判断图是 ...
- HDU4635 Strongly connected【强连通】
题意: 给一个n个点的简单有向图,问最多能加多少条边使得该图仍然是简单有向图,且不是强连通图.简单有向图的定义为:没有重边,无自环. 强连通图的定义为:整个图缩点后就只有一个点,里面包含n个原点,也就 ...
- Strongly connected(hdu4635(强连通分量))
/* http://acm.hdu.edu.cn/showproblem.php?pid=4635 Strongly connected Time Limit: 2000/1000 MS (Java/ ...
- PTA Strongly Connected Components
Write a program to find the strongly connected components in a digraph. Format of functions: void St ...
- algorithm@ Strongly Connected Component
Strongly Connected Components A directed graph is strongly connected if there is a path between all ...
- cf475B Strongly Connected City
B. Strongly Connected City time limit per test 2 seconds memory limit per test 256 megabytes input s ...
- 【CF913F】Strongly Connected Tournament 概率神题
[CF913F]Strongly Connected Tournament 题意:有n个人进行如下锦标赛: 1.所有人都和所有其他的人进行一场比赛,其中标号为i的人打赢标号为j的人(i<j)的概 ...
- HDU 4635 Strongly connected (Tarjan+一点数学分析)
Strongly connected Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) ...
- 【CodeForces】913 F. Strongly Connected Tournament 概率和期望DP
[题目]F. Strongly Connected Tournament [题意]给定n个点(游戏者),每轮游戏进行下列操作: 1.每对游戏者i和j(i<j)进行一场游戏,有p的概率i赢j(反之 ...
随机推荐
- 重装mysql后导致Navicat连接失败
今天重装了mysql数据库,然后再使用navicat去连接数据库的时候,一直报错 1251 Client does not support authentication protocol reques ...
- 美团面试(c++方向)
美团后台基本都是java,c++很少的 一面:(其实问了很多,但是很多不记得了) 1. mfc里边的句柄, Qt里边的信号和槽函数 2. c 程序的内存分布 3. 堆和栈的区别 4. ...
- 最小的N个和(堆)
描述: 有两个长度为N的序列 AB,从AB中各选一个数,可以得到N^2个和,求这N^2个和中最小的N个 输入 5 1 3 2 4 5 6 3 4 1 7 输出 2 3 4 4 5 分析: 首先限定输出 ...
- hibernate设置二级缓存时报错java.lang.NoClassDefFoundError: org/hibernate/engine/jndi/JndiNameException
错误提示大概意思是,没有类定义错误,就是找不到要使用的hibernate二级缓存管理引擎类.我在这用的是ehcache二级轻量级缓存,报错原因可能是导入的jar包版本和使用的hibernate框架核心 ...
- 将工程改造为SOA架构
商城是基于soa的架构,表现层和服务层是不同的工程.所以要实现商品列表查询需要两个系统之间进行通信. 流动计算架构 当服务越来越多,容量的评估,小服务资源的浪费等问题逐渐显现,此时需增加一个调度中心基 ...
- UITableView 的横向滑动实现
UITableView 的横向滑动实现 概述 为了实现横向滑动的控件,可以继承类 UIScrollView 或类 UIView 自定义可以横向滑动的控件,这里通过 UITableView 的旋转,实现 ...
- 提高工作效率-window热键
一.虚拟桌面 Ctrl win D 创建另一个桌面 Ctrl win 左右箭头 来回切换桌面 Ctrl win F4 关闭当前虚拟桌面 二.窗口 win M ...
- Jquery 选择器 特殊字符 转义字符
1.Jquery 选择器 id包含特殊字符,加双斜线 \\ 例 <input type="text" id="dbo_HouseInfo.HouseResour ...
- CIFS 与 SMB 有什么区别?
CIFS 与 SMB 有什么区别? https://www.getnas.com/2018/11/30/cifs-vs-smb/ 网络协议 一知半解 学习一下挺好的.. 记得 win2019 已经废弃 ...
- LLVM的安装
1. 官网下载 llvm 2. 官网下载cmake 3. configure 执行 llvm 发现报错 4. 解压缩 cmake 5.将cmake 下面的bin 目录放到环境变量里面去 6. 创建一个 ...