用途

求回文子串

做法

先考虑回文子串以某字符为中心的情况,即长度为奇数

推着做,记rad[i]为以i位置为中心的最大半径(包含中点)

考虑怎么求rad[i]。找之前的一个右端点最靠右的位置p,设它的中心是j

如果有i<p,那么找到i关于j的对称点2*j-i,那么一定$rad[i]>=min\{rad[2*j-i],[p-i+1]\}$

如果i>=p,那前面做的东西对我求i没什么帮助,rad[i]>=1

然后再暴力往后判断rad[i]能不能再大一点

因为这个右端点最靠右的位置一定是递增的,所以能感受出这是一个O(n)的算法

为了解决串长为偶数的问题,我们在每两个字符间(以及开头结尾?)都插个相同的特殊符号;为了避免可能的溢出,在最开始再插个别的符号

例题

 #include<bits/stdc++.h>
#define CLR(a,x) memset(a,x,sizeof(a))
using namespace std;
typedef long long ll;
typedef pair<int,int> pa;
const int maxn=2.2e7+; inline ll rd(){
ll x=;char c=getchar();int neg=;
while(c<''||c>''){if(c=='-') neg=-;c=getchar();}
while(c>=''&&c<='') x=x*+c-'',c=getchar();
return x*neg;
} char s[maxn];
int r[maxn]; int main(){
//freopen("","r",stdin);
int i,j,k;
scanf("%s",s+);s[]='!';
int len=strlen(s+);
for(i=len;i>=;i--){
s[i<<]=s[i],s[i<<|]='#';
}len=len*+;
int mp=,mi=,ans=;
for(i=;i<=len;i++){
r[i]=i<=mp?min(mp-i+,r[mi*-i]):;
while(s[i+r[i]]==s[i-r[i]]) r[i]++;
if(i+r[i]->mp) mp=i+r[i]-,mi=i;
ans=max(ans,r[i]);
}printf("%d\n",ans-);
return ;
}

[模板] Manacher(马拉车)算法的更多相关文章

  1. Manacher(马拉车)算法(jekyll迁移)

    layout: post title: Manacher(马拉车)算法 date: 2019-09-07 author: xiepl1997 cover: 'assets/img/manacher.p ...

  2. manacher(马拉车算法)

    Manacher(马拉车算法) 序言 mannacher 是一种在 O(n)时间内求出最长回文串的算法 我们用暴力求解最长回文串长度的时间复杂度为O(n3) 很明显,这个时间复杂度我们接受不了,这时候 ...

  3. Manacher (马拉车) 算法:解决最长回文子串的利器

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

  4. HDU - 3068 最长回文manacher马拉车算法

    # a # b # b # a # 当我们遇到回判断最长回文字符串问题的时候,若果用暴力的方法来做,就是在字符串中间添加 #,然后遍历每一个字符,找到最长的回文字符串.那么马拉车算法就是在这个基础上进 ...

  5. manacher马拉车算法

    Manacher算法讲解 总有人喜欢搞事情,出字符串的题,直接卡掉了我的40分 I.适用范围 manacher算法解决的是字符串最长回文子串长度的问题. 关键词:最长 回文 子串 II.算法 1.纯暴 ...

  6. 最长回文子串 —— Manacher (马拉车) 算法

    最长回文子串 回文串就是原串和反转字符串相同的字符串.比如 aba,acca.前一个是奇数长度的回文串,后一个是偶数长度的回文串. 最长回文子串就是一个字符串的所有子串中,是回文串且长度最长的子串. ...

  7. Manacher(马拉车)算法

    Manacher算法是一个求字符串的最长回文子串一种非常高效的方法,其时间复杂度为O(n).下面分析以下其实行原理及代码: 1.首先对字符串进行预处理 因为回文分为奇回文和偶回文,分类处理比较麻烦,所 ...

  8. Manacher(马拉车)算法详解

    给定一个字符串,求出其最长回文子串 eg:  abcba 第一步: 在字符串首尾,及各字符间各插入一个字符(前提这个字符未出现在串里). 如  原来ma  /*  a    b a    b   c ...

  9. Manacher's Algorithm 马拉车算法

    这个马拉车算法Manacher‘s Algorithm是用来查找一个字符串的最长回文子串的线性方法,由一个叫Manacher的人在1975年发明的,这个方法的最大贡献是在于将时间复杂度提升到了线性,这 ...

随机推荐

  1. XManager&XShell如何保存登录用户和登录密码

    Xshell配置ssh免密码登录 - qingfeng2556的博客 - CSDN博客https://blog.csdn.net/wuhenzhangxing/article/details/7948 ...

  2. python3 九九乘法表打印花式操作(然并卵)

    # 九九乘法表# 方法一# for i in range(1, 10):# for j in range(1, i+1):# print('{}x{}={}\t'.format(i, j, i*j), ...

  3. spring后置处理器BeanPostProcessor

    BeanPostProcessor的作用是在调用初始化方法的前后添加一些逻辑,这里初始化方法是指在配置文件中配置init-method,或者实现了InitializingBean接口的afterPro ...

  4. MySQL客户端工具及SQL

    一.客户端命令介绍 mysql  mysqladmin mysqldump mysql 1.用于数据库的连接管理 2. mysqladmin 1. 2. mysqldump 1. 2.

  5. 如何使用 Yum Repository 安装指定版本的 MySQL

    自从从使用 debian 系的 apt-get 转到使用 yum 工具之后一直不是很习惯,也没有去看过很多工具包安装的时候到底影响到了哪些文件等.这次借这次社区版 MySQL 安装来一并梳理一下. 首 ...

  6. Java多线程3:Thread中的实例方法

    一.Thread类中的方法调用方式 学习Thread类中的方法是学习多线程的第一步.在学习多线程之前特别提出一点,调用Thread中的方法的时候,在线程类中,有两种方式,一定要理解这两种方式的区别: ...

  7. Code::Blocks debug程序

    设置Settings--->Compiler, 打上勾: Produce debugging symbols [-g] 需要在settings->debugger settings-> ...

  8. 一、hadoop部署

    一.Java环境 yum 安装方式安装 1.搜索JDK安装包 yum search java|grep jdk 2.安装 yum install java-1.8.0-openjdk-src.x86_ ...

  9. epoch、 iteration和batchsize区别

    转自: https://blog.csdn.net/qq_27923041/article/details/74927398 深度学习中经常看到epoch. iteration和batchsize,下 ...

  10. 自定义组件Component

    定义compa组件 由4个页面构成 compa.js: compa.json: compa.wxml: compa:wxss: 1.compa.json:在json文件进行自定义组件声明 { &quo ...