「SDOI2014」重建

题意

给一个图\(G\),两点\((u,v)\)有边的概率是\(p_{u,v}\),求有\(n-1\)条边通行且组成了一颗树的概率是多少。


抄了几个矩阵树定理有趣的感性说法

  • 矩阵树定理的度数矩阵记录的是每个点的边权和,邻接矩阵记录的是边权,求的则是所有生成树的边权乘积和

  • 考虑Kirchhoff矩阵的意义:\(K[G]=D[G]−A[G]=B[G]B^T[G]\),之所以能够进行生成树计数是对于其伴随矩阵在计数\(n−1\)条边的集合时,当\(n−1\)条边中存在环就会产生线性组合而导致行列式为零,否则恰好对角线上均为伴随矩阵中所赋的值,使得\(\det(B_{i,j})^2\)就为\(1\)

考虑直接把度数矩阵赋为出度概率和,连边矩阵为概率,然后相减套矩阵树定理求得是什么

\[\sum_T\prod_{(u,v)\in T}p_{u,v}
\]

然而我们需要求

\[\sum_T\prod_{(u,v)\in T}p_{u,v}\prod_{(u,v)\notin T}(1-p_{u,v})
\]

化一下可以得到

\[\prod_{(u,v)\in G}(1-p_{u,v})\sum_T\prod_{(u,v)\in T}\frac{p_{u,v}}{1-p_{u,v}}
\]

然后把后面的拿去跑矩阵树就可以了。

注意一些精度问题,把\(p=0\)搞成\(p=\epsilon\),\(p=1\)搞成\(1-\epsilon\)差不多就可以了


Code:

#include <cstdio>
#include <cmath>
#include <algorithm>
const int N=52;
const double eps=1e-10;
int n;
double p[N][N],a[N][N];
void Gauss()
{
--n;
for(int i=1;i<=n;i++)
{
int id=i;
for(int j=i+1;j<=n;j++)
if(fabs(a[id][i])<fabs(a[j][i])) id=j;
std::swap(a[id],a[i]);
for(int j=i+1;j<=n;j++)
{
double p=a[j][i]/a[i][i];
for(int k=n;k>=i;k--)
a[j][k]-=a[i][k]*p;
}
}
}
int main()
{
scanf("%d",&n);
double sum=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
{
scanf("%lf",&p[i][j]);
if(p[i][j]==0) p[i][j]=eps;
if(p[i][j]==1) p[i][j]=1-eps;
if(i<j) sum*=1-p[i][j];
a[i][j]=p[i][j]/(1-p[i][j]);
}
for(int i=1;i<=n;i++)
{
a[i][i]=0;
for(int j=1;j<=n;j++)
if(i!=j)
a[i][i]+=a[i][j],a[i][j]=-a[i][j];
}
Gauss();
for(int i=1;i<=n;i++) sum*=fabs(a[i][i]);
printf("%.4lf\n",sum);
return 0;
}

2019.2.21

「SDOI2014」重建 解题报告的更多相关文章

  1. 「SDOI2014」Lis 解题报告

    「SDOI2014」Lis 题目描述 给定序列 \(A\),序列中的每一项 \(A_i\) 有删除代价 \(B_i\) 和附加属性 \(C_i\). 请删除若干项,使得 \(A\) 的最长上升子序列长 ...

  2. 「ZJOI2016」旅行者 解题报告

    「ZJOI2016」旅行者 对网格图进行分治. 每次从中间选一列,然后枚举每个这一列的格子作为起点跑最短路,进入子矩形时把询问划分一下,有点类似整体二分 至于复杂度么,我不会阿 Code: #incl ...

  3. 「HNOI2016」树 解题报告

    「HNOI2016」树 事毒瘤题... 我一开始以为每次把大树的子树再接给大树,然后死活不知道咋做,心想怕不是个神仙题哦 然后看题解后才发现是把模板树的子树给大树,虽然思维上难度没啥了,但是还是很难写 ...

  4. 「HNOI2016」序列 解题报告

    「HNOI2016」序列 有一些高妙的做法,懒得看 考虑莫队,考虑莫队咋移动区间 然后你在区间内部找一个最小值的位置,假设现在从右边加 最小值左边区间显然可以\(O(1)\),最小值右边的区间是断掉的 ...

  5. 「HNOI2016」网络 解题报告

    「HNOI2016」网络 我有一个绝妙的可持久化树套树思路,可惜的是,它的空间是\(n\log^2 n\)的... 注意到对一个询问,我们可以二分答案 然后统计经过这个点大于当前答案的路径条数,如果这 ...

  6. 「HAOI2018」染色 解题报告

    「HAOI2018」染色 是个套路题.. 考虑容斥 则恰好为\(k\)个颜色恰好为\(c\)次的贡献为 \[ \binom{m}{k}\sum_{i\ge k}(-1)^{i-k}\binom{m-k ...

  7. 「HNOI2016」最小公倍数 解题报告

    「HNOI2016」最小公倍数 考虑暴力,对每个询问,处理出\(\le a,\le b\)的与询问点在一起的联通块,然后判断是否是一个联通块,且联通块\(a,b\)最大值是否满足要求. 然后很显然需要 ...

  8. 「SCOI2016」围棋 解题报告

    「SCOI2016」围棋 打CF后困不拉基的,搞了一上午... 考虑直接状压棋子,然后发现会t 考虑我们需要上一行的状态本质上是某个位置为末尾是否可以匹配第一行的串 于是状态可以\(2^m\)压住了, ...

  9. 「SCOI2016」妖怪 解题报告

    「SCOI2016」妖怪 玄妙...盲猜一个结论,然后过了,事后一证,然后假了,数据真水 首先要最小化 \[ \max_{i=1}^n (1+k)x_i+(1+\frac{1}{k})y_i \] \ ...

随机推荐

  1. Azure系列2.1.9 —— CloudBlob

    (小弟自学Azure,文中有不正确之处,请路过各位大神指正.) 网上azure的资料较少,尤其是API,全是英文的,中文资料更是少之又少.这次由于公司项目需要使用Azure,所以对Azure的一些学习 ...

  2. 在linux和本地系统之间进行数据传输的简单方法--lrzsz

    lrzsz是一款在linux里可代替ftp上传和下载的程序. >>提君博客原创  http://www.cnblogs.com/tijun/  << 提君博客原创 安装和使用非 ...

  3. (一)类数组对象NodeList

    NodeList对象的特点: NodeList是一种类数组对象,用于保存一组有序的节点. 可以通过方括号语法来访问NodeList的值,有item方法与length属性. 它并不是Array的实例,没 ...

  4. php变量详解

    变量是用于存储信息的"容器". 定义一个变量的语法: $变量名 = 值; 使用变量的例子: <?php $x=5; $y=6; $z=$x+$y; echo $z; ?> ...

  5. Programming好文解读系列(—)——代码整洁之道

    注:初入职场,作为一个程序员,要融入项目组的编程风格,渐渐地觉得系统地研究下如何写出整洁而高效的代码还是很有必要的.与在学校时写代码的情况不同,实现某个功能是不难的,需要下功夫的地方在于如何做一些防御 ...

  6. 剑指offer(15)

    题目: 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 书中的思路: 按照这个思路我们很容易写出以下代码: import java.util.S ...

  7. docker学习笔记一

    知识点: 1)docker简介 2)docker安装,仓库配置 3)docker仓库镜像拉取,导出,导入,删除 4)docker容器操作,容器的创建,删除,运行,停止,日志查看等. 5)  docke ...

  8. yii2的下载安装

    1.直接使用归档文件安装yii2的高级模板: 从 yiiframework.com 下载归档文件. 下载yii2的高级模板的压缩文件, 将yii-advanced-app-2.0.12文件夹复制到项目 ...

  9. Servlet学习的一些笔记

    Servlet一点笔记 Servlet:Server Applet,全称Java Servlet,是运行在Web服务器或应用服务器上的程序,它是作为来自Web浏览器或其他HTTP客户端的请求和HTTP ...

  10. vscode实现vue.js项目的过程

    https://blog.csdn.net/weixin_37567150/article/details/81291433 https://blog.csdn.net/ywl570717586/ar ...