使用Pytorch之前,有几个概念需要弄清楚.

什么是Tensors(张量)?

  这个概念刚出来的时候,物理科班出身的我都感觉有点愣住了,好久没有接触过物理学的概念了.

这个概念,在物理学中怎么解释呢?

  张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。

用在神经网络架构PyTorch中,又是怎么的概念呢?

PyTorch Tensor 在概念上与 numpy 数组相同: Tensor 是一个n维数组, PyTorch 也提供了很多能在这些 Tensor 上操作的函数. 像 numpy 数组一样, PyTorch Tensor 也和numpy的数组对象一样不了解深度学习,计算图和梯度下降;它们只是科学计算的通用工具.

基本的使用例子:

构建一个 5x3 的矩阵, 未初始化的:

x = torch.Tensor(5, 3)
print(x)

构建一个随机初始化的矩阵:

x = torch.rand(5, 3)
print(x)

获得 size:

print(x.size())

 更更多例子见:http://pytorch.apachecn.org/cn/tutorials/beginner/blitz/tensor_tutorial.html

什么是autograd 自动求导包?

 autograd 自动求导包针对张量上的所有操作都提供了自动微分操作. 这是一个逐个运行的框架, 这意味着您的反向传播是由您的代码如何运行来定义的, 每个单一的迭代都可以不一样.

autograd.Variable 是包的核心类. 它包装了张量, 并且支持几乎所有的操作. 一旦你完成了你的计算, 你就可以调用 .backward() 方法, 然后所有的梯度计算会自动进行.

你还可以通过 .data 属性来访问原始的张量, 而关于该 variable(变量)的梯度会被累计到 .grad上去.

如果你想计算导数, 你可以在 Variable 上调用 .backward() 方法. 如果 Variable 是标量的形式(例如, 它包含一个元素数据), 你不必指定任何参数给 backward(), 但是, 如果它有更多的元素. 你需要去指定一个 grad_output 参数, 该参数是一个匹配 shape(形状)的张量.

  基本的例子:

import torch
from torch.autograd import Variable x = torch.randn(3)
x = Variable(x, requires_grad = True) y = x * 2
while y.data.norm() < 1000:
y = y * 2 print(y)

详细参考:http://pytorch.apachecn.org/cn/tutorials/beginner/blitz/autograd_tutorial.html#variable

神经网络架构PYTORCH-几个概念的更多相关文章

  1. 神经网络架构PYTORCH-前馈神经网络

    首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例: 一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了. class N ...

  2. 神经网络架构PYTORCH-宏观分析

    基本概念和功能: PyTorch是一个能够提供两种高级功能的python开发包,这两种高级功能分别是: 使用GPU做加速的矢量计算 具有自动重放功能的深度神经网络从细的粒度来分,PyTorch是一个包 ...

  3. 神经网络架构PYTORCH-初相识(3W)

    who? Python是基于Torch的一种使用Python作为开发语言的开源机器学习库.主要是应用领域是在自然语言的处理和图像的识别上.它主要的开发者是Facebook人工智能研究院(FAIR)团队 ...

  4. 神经网络架构pytorch-MSELoss损失函数

    MSELoss损失函数中文名字就是:均方损失函数,公式如下所示: 这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标. 很多的 loss 函数都有 size_average 和 ...

  5. (转) 干货 | 图解LSTM神经网络架构及其11种变体(附论文)

    干货 | 图解LSTM神经网络架构及其11种变体(附论文) 2016-10-02 机器之心 选自FastML 作者:Zygmunt Z. 机器之心编译  参与:老红.李亚洲 就像雨季后非洲大草原许多野 ...

  6. 怎样设计最优的卷积神经网络架构?| NAS原理剖析

    虽然,深度学习在近几年发展迅速.但是,关于如何才能设计出最优的卷积神经网络架构这个问题仍在处于探索阶段. 其中一大部分原因是因为当前那些取得成功的神经网络的架构设计原理仍然是一个黑盒.虽然我们有着关于 ...

  7. Hbase的架构原理、核心概念

    Hbase的架构原理.核心概念 1.Hbase的表.行.列.列族 2.核心组件: Table和region Table在行的方向上分割为多个HRegion, 一个region由[startkey,en ...

  8. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  9. 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)

    摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...

随机推荐

  1. docker镜像运行错误排查

    docker做服务时,如果客户端无法连接,错误排查: 1.先使用 docker ps 查看镜像是否都在运行中,如果没有就进入镜像查看日志 2.如果确定代码及配置文件没有问题,就需要检查镜像的替换是否正 ...

  2. Yii2.0 解决“the requested URL was not found on this server”问题

    在你下了 Yii 框架,配置完路由 urlManager 后,路由访问页面会报错“the requested URL was not found on this server”,url类似于这种“ht ...

  3. 51ak带你看MYSQL5.7源码4:实现SQL黑名单功能

    博客迁移至: https://www.dboop.com/ 从事DBA工作多年 MYSQL源码也是头一次接触 尝试记录下自己看MYSQL5.7源码的历程 申明:个人Python编程很溜,但是C++还停 ...

  4. web安全之机器学习入门——2.机器学习概述

    目录 0 前置知识 什么是机器学习 机器学习的算法 机器学习首先要解决的两个问题 一些基本概念 数据集介绍 1 正文 数据提取 数字型 文本型 数据读取 0 前置知识 什么是机器学习 通过简单示例来理 ...

  5. LNMP支持 多版本PHP

    1.到 http://www.php.net/downloads.php(http://www.php.net/downloads.php) 选择合适的版本号,如 5.6.34 2.到 LNMP 1. ...

  6. h5 调起ios数字键盘的坑,限制特殊字符输入方案

    最近有个需求是利率只允许输入数字和小数点,用以下 <input type="number" pattern="[0-9]*"> 在ios会调起数字键 ...

  7. JQuery跳出each循环的方法

    一.jquery each循环,要实现break和continue的功能: break----用return false; continue --用return ture; 二.jquery怎么跳出当 ...

  8. Notepad++编写运行python程序

    Notepad++编写运行python程序. 1.菜单栏->语言->P->Python设置语言为Python 2.写好代码后ctrl+s保存文件为py文件 3.菜单栏->运行, ...

  9. java开发过程中,报错Dangling meta character '*' near index 0,解决办法

    1.split方法转化字符串为数组: String[] strPicArr = map.get("hw_pic").toString().split("*"); ...

  10. Linux二进制分析PDF

    链接:https://pan.baidu.com/s/1lp5mz30J3RamFyQIXRvx5w 提取码:vcdq 我就是看不惯csdn的付费下载,链接失效了就评论区留言,我能收到邮件.