使用Pytorch之前,有几个概念需要弄清楚.

什么是Tensors(张量)?

  这个概念刚出来的时候,物理科班出身的我都感觉有点愣住了,好久没有接触过物理学的概念了.

这个概念,在物理学中怎么解释呢?

  张量是一个可用来表示在一些矢量、标量和其他张量之间的线性关系的多线性函数。

用在神经网络架构PyTorch中,又是怎么的概念呢?

PyTorch Tensor 在概念上与 numpy 数组相同: Tensor 是一个n维数组, PyTorch 也提供了很多能在这些 Tensor 上操作的函数. 像 numpy 数组一样, PyTorch Tensor 也和numpy的数组对象一样不了解深度学习,计算图和梯度下降;它们只是科学计算的通用工具.

基本的使用例子:

构建一个 5x3 的矩阵, 未初始化的:

x = torch.Tensor(5, 3)
print(x)

构建一个随机初始化的矩阵:

x = torch.rand(5, 3)
print(x)

获得 size:

print(x.size())

 更更多例子见:http://pytorch.apachecn.org/cn/tutorials/beginner/blitz/tensor_tutorial.html

什么是autograd 自动求导包?

 autograd 自动求导包针对张量上的所有操作都提供了自动微分操作. 这是一个逐个运行的框架, 这意味着您的反向传播是由您的代码如何运行来定义的, 每个单一的迭代都可以不一样.

autograd.Variable 是包的核心类. 它包装了张量, 并且支持几乎所有的操作. 一旦你完成了你的计算, 你就可以调用 .backward() 方法, 然后所有的梯度计算会自动进行.

你还可以通过 .data 属性来访问原始的张量, 而关于该 variable(变量)的梯度会被累计到 .grad上去.

如果你想计算导数, 你可以在 Variable 上调用 .backward() 方法. 如果 Variable 是标量的形式(例如, 它包含一个元素数据), 你不必指定任何参数给 backward(), 但是, 如果它有更多的元素. 你需要去指定一个 grad_output 参数, 该参数是一个匹配 shape(形状)的张量.

  基本的例子:

import torch
from torch.autograd import Variable x = torch.randn(3)
x = Variable(x, requires_grad = True) y = x * 2
while y.data.norm() < 1000:
y = y * 2 print(y)

详细参考:http://pytorch.apachecn.org/cn/tutorials/beginner/blitz/autograd_tutorial.html#variable

神经网络架构PYTORCH-几个概念的更多相关文章

  1. 神经网络架构PYTORCH-前馈神经网络

    首先要熟悉一下怎么使用PyTorch来实现前馈神经网络吧.为了方便理解,我们这里只拿只有一个隐藏层的前馈神经网络来举例: 一个前馈神经网络的源码和注释如下:比较简单,这里就不多介绍了. class N ...

  2. 神经网络架构PYTORCH-宏观分析

    基本概念和功能: PyTorch是一个能够提供两种高级功能的python开发包,这两种高级功能分别是: 使用GPU做加速的矢量计算 具有自动重放功能的深度神经网络从细的粒度来分,PyTorch是一个包 ...

  3. 神经网络架构PYTORCH-初相识(3W)

    who? Python是基于Torch的一种使用Python作为开发语言的开源机器学习库.主要是应用领域是在自然语言的处理和图像的识别上.它主要的开发者是Facebook人工智能研究院(FAIR)团队 ...

  4. 神经网络架构pytorch-MSELoss损失函数

    MSELoss损失函数中文名字就是:均方损失函数,公式如下所示: 这里 loss, x, y 的维度是一样的,可以是向量或者矩阵,i 是下标. 很多的 loss 函数都有 size_average 和 ...

  5. (转) 干货 | 图解LSTM神经网络架构及其11种变体(附论文)

    干货 | 图解LSTM神经网络架构及其11种变体(附论文) 2016-10-02 机器之心 选自FastML 作者:Zygmunt Z. 机器之心编译  参与:老红.李亚洲 就像雨季后非洲大草原许多野 ...

  6. 怎样设计最优的卷积神经网络架构?| NAS原理剖析

    虽然,深度学习在近几年发展迅速.但是,关于如何才能设计出最优的卷积神经网络架构这个问题仍在处于探索阶段. 其中一大部分原因是因为当前那些取得成功的神经网络的架构设计原理仍然是一个黑盒.虽然我们有着关于 ...

  7. Hbase的架构原理、核心概念

    Hbase的架构原理.核心概念 1.Hbase的表.行.列.列族 2.核心组件: Table和region Table在行的方向上分割为多个HRegion, 一个region由[startkey,en ...

  8. MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网络训练实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前两篇文章MINIST深度学习识别:python全连接神经网络和pytorch LeNet CNN网 ...

  9. 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)

    摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...

随机推荐

  1. nsq 初试

    nsqlookupd tcp 4160 http 4161nsqd 4150nsqadmin 4171 1:安装$ brew install nsq1) 停止nsq默认的启动$ brew servic ...

  2. Go的并发调度原理

    Go语言是为并发而生的语言,Go语言是为数不多的在语言层面实现并发的语言:也正是Go语言的并发特性,吸引了全球无数的开发者.   并发(concurrency)和并行(parallellism) 并发 ...

  3. Asp.net Zero 应用实战-最初部署问题

    此时用的是aspnet-zero-core-4.3.0 1.前两天vs2017刚刚最新升级了,打开后就报错,然后就根据提示把每个项目文件中添加了 <PropertyGroup> <E ...

  4. String StringBuilder 包装类

    1. String 概述 程序中直接写上双引号的字符串就在字符串常量池中,new的不在池当中 java6之前常量池在方法区,java7以后将字符串常量池放在堆中 因为字符串是对象,应该在堆中 相同的字 ...

  5. java38

    字符串内存分析 String str = new String("ABCD") 会先在堆中开辟一个空间,然后去常量池(方法区)中寻找是否有该变量,如果有,直接引用常量池中的内容 如 ...

  6. Redis的启动及配置

    在redis已经安装完成的情况下,进入redis/bin目录下,输入命令: ./redis-server,就可以直接启动redis了,效果如图所示: 但是此时终端无法进行任何操作,按CTRL+c命令, ...

  7. MUI动态生成轮播图片

    $$.ajax({ url:'http://localhost:8080/api/v1/food/listFeatureFood', type:'Get', xhrFields: {withCrede ...

  8. Spring资源加载器抽象和缺省实现 -- ResourceLoader + DefaultResourceLoader(摘)

    概述 对于每一个底层资源,比如文件系统中的一个文件,classpath上的一个文件,或者一个以URL形式表示的网络资源,Spring 统一使用 Resource 接口进行了建模抽象,相应地,对于这些资 ...

  9. Unity加载AB资源

    using System.Collections; using System.Collections.Generic; using UnityEngine; public class AssetBun ...

  10. 利用python list 完成最简单的DB连接池

    先来看查看效果: 在代码连接数据库后,并且执行三条sql后,将mysql直接重启掉,故我们的连接池连接均是不ok的,所以,它会全部删除再抓新的连接下来,重启mysql命令: 关于python代码: # ...