expectation

Description

给出一棵带权值的树,我们假设从某个节点出发,到目标节点的时间为两个节点之间的最短路。由于出发节点不好选取,所以选在每个节点都有一定的概率,现在我们要求从出发点到目标节点的期望时间(即每个节点到目标点的时间*概率)。 为了避免精度错误, 直接给出了每个节点所占的权值, 那么每个节点的概率就是节点权值/总权值和( 注意查看实际输出要求)。

Input

输入第一行为一个正整数 n 表示树的节点数目, 节点编号从 1 到 n。

接下来一行 n 个整数 vi, 表示第 i 个节点所占的权值(<=20)。 紧接着 n-1 行,每行三个数 x, y, d (d<=20) ,表示经过 x 和 y 之间的树边 所需花费的时间为 d。

接下来一行有一个整数 q,表示询问数目。 紧接着 q 行, 每行一个整数,表示目的节点。

30%的数据: n<=20,q=1

50%的数据: n<=1000, q<=10

80%的数据: n<=10000,q<=1000 100%的数据: n<=100000, q<=n

Output

输出 q 行, 为了避免精度问题,所以要求你把期望时间*节点的总权值和作为答案, 这个整数可能很大,所以只要对 707063423 取余后输出就可以了。

Sample Input

51 1 1 1 11 2 21 3 11 4 33 5 21 3

Sample Output

10

思路

每个节点保存两个值,一个是其子树的点权和(包括自身节点) nodesum[ ],一个是其子树各点到它的期望时间和 dp[ ]。那么我们假设根节点为 u ,其仅有一个儿子 v , u 到 v 的距离为 w ,而 v 有若干儿子节点,那么 dp[v] 表示 v 的子树各点到 v 的期望时间和,那么各个节点到达 u 的期望时间和便可以这样计算: dp[u] = dp[v] + nodesum[ v ] *w; (式子的理解,v 的一个儿子节点为 f,那么 f 到达 u 的期望时间为  (sum[ f ->v] + sum [v- > u])*val[f] (其中 val[v] 为 f 的权值),dp[v] 包含了 sum[f->v]*val[f],所以也就是式子的分配式推广到各个子节点计算出来的和),求出了 nodesum[ ] 数组和 dp[ ] 数组后,对于 q 个询问可以快速的求出。我们已经知道了各个节点到达根节点的期望时间和,那么从根节点开始递推下来可以得到各个点的期望时间和。另开一个数组表示每个节点的期望时间和,那么 dissum[u] = dp[u]。以 u 的儿子 v 为例, v 的子节点到 v 不必经过 v->u 这条路径,因此 dissum[u] 多了 nodesum[v] * w,但是对于不是 v 的子节点的节点,只到达了 u ,因此要到达 v 必须多走 u->v 这条路径,因此 dissum[u] 少了 ( totaval - nodesum[v] ) * w) ,所以 dissum[v] = dissum[u] - nodesum[v] * w + (total - nodesum[v] ) * w,按照这个方法递推下去就可以得到各个点的期望时间和。

 AC代码
#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int maxn = 100005;
struct Edge{
    int u,v,w,next;
}edge[maxn<<1];
int tot = 0,totval= 0,head[maxn],val[maxn],nodesum[maxn],dissum[maxn],dp[maxn];  

void addedge(int u,int v,int w)
{
    edge[tot].u = u,edge[tot].v = v,edge[tot].w = w,edge[tot].next = head[u];
    head[u] = tot++;
}  

void dfs1(int u,int fa)
{
    int i;
    dp[u] = 0,nodesum[u] = val[u];
    for (i = head[u];~i;i = edge[i].next)
    {
        int v = edge[i].v,w = edge[i].w;
        if (v == fa)    continue;
        dfs1(v,u);
        dp[u] += dp[v] + nodesum[v]*w;
        nodesum[u] += nodesum[v];
    }
}  

void dfs2(int u,int fa)
{
    int i;
    for (i = head[u];~i;i = edge[i].next)
    {
        int v = edge[i].v,w = edge[i].w;
        if (v == fa)    continue;
        dissum[v] = dissum[u] - nodesum[v]*w + (totval - nodesum[v])*w;
        dfs2(v,u);
    }
}  

int main()
{
    //freopen("input.txt","r",stdin);
    int N,i,u,v,w,m,tmp;
    memset(head,-1,sizeof(head));
    scanf("%d",&N);
    for (i = 1;i <= N;i++)   scanf("%d",&val[i]),totval += val[i];
    for (i = 1;i < N;i++)
    {
        scanf("%d%d%d",&u,&v,&w);
        addedge(u,v,w);
        addedge(v,u,w);
    }
    dfs1(1,1);
    dissum[1] = dp[1];
    dfs2(1,1);
    scanf("%d",&m);
    for (i = 1;i <= m;i++)
    {
        scanf("%d",&tmp);
        printf("%d\n",dissum[tmp]);
    }
    return 0;
}

  

数据结构作业——expectation(树形dp+dfs)的更多相关文章

  1. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  2. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  3. HDU 5293 Tree chain problem 树形dp+dfs序+树状数组+LCA

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 题意: 给你一些链,每条链都有自己的价值,求不相交不重合的链能够组成的最大价值. 题解: 树形 ...

  4. poj 3140 Contestants Division(树形dp? dfs计数+枚举)

    本文出自   http://blog.csdn.net/shuangde800 ------------------------------------------------------------ ...

  5. 树的直径的求法即相关证明【树形DP || DFS】

    学习大佬:树的直径求法及证明 树的直径 定义: 一棵树的直径就是这棵树上存在的最长路径. 给定一棵树,树中每条边都有一个权值,树中两点之间的距离定义为连接两点的路径边权之和.树中最远的两个节点之间的距 ...

  6. 刷题总结——Tree chain problem(HDU 5293 树形dp+dfs序+树状数组)

    题目: Problem Description Coco has a tree, whose vertices are conveniently labeled by 1,2,…,n.There ar ...

  7. VIJOS1476 旅行规划(树形Dp + DFS暴力乱搞)

    题意: 给出一个树,树上每一条边的边权为 1,求树上所有最长链的点集并. 细节: 可能存在多条最长链!最长链!最长链!重要的事情说三遍 分析: 方法round 1:暴力乱搞Q A Q,边权为正-> ...

  8. [USACO10MAR]伟大的奶牛聚集 BZOJ 1827 树形dp+dfs

    题目描述 Bessie is planning the annual Great Cow Gathering for cows all across the country and, of cours ...

  9. BZOJ4784 ZJOI2017仙人掌(树形dp+dfs树)

    首先考虑是棵树的话怎么做.可以发现相当于在树上选择一些长度>=2的路径使其没有交,同时也就相当于用一些没有交的路径覆盖整棵树. 那么设f[i]为覆盖i子树的方案数.转移时考虑包含根的路径.注意到 ...

随机推荐

  1. iOS 获取当前点击的坐标

    - (void)touchesBegan:(NSSet<UITouch *> *)touches withEvent:(UIEvent *)event { NSSet *allTouch ...

  2. 解读AppIcon图标设置置信息和App内存警告临界值

    前面有同学问到了iOS内存警告临界值和工程项目里AppIcon的一些配置信息,相信对刚入行的同学来说,可能都会碰到类似的问题,记录一下供后来者查询. 1.先简单说下AppIcon的图标的配置信息 1) ...

  3. React Native知识11-Props(属性)与State(状态)

    一:Props(属性) 大多数组件在创建时就可以使用各种参数来进行定制.用于定制的这些参数就称为props(属性).props是在父组件中指定,而且一经指定,在被指定的组件的生命周期中则不再改变 通过 ...

  4. 【代码笔记】iOS-自定义开关

    一,效果图. 二,工程图. 三,代码. RootViewController.h #import <UIKit/UIKit.h> #import "ToggleView.h&qu ...

  5. IO流的登录与注册

    import java.io.BufferedReader;import java.io.BufferedWriter;import java.io.File;import java.io.FileR ...

  6. Node.js 教程 05 - EventEmitter(事件监听/发射器 )

    目录: 前言 Node.js事件驱动介绍 Node.js事件 注册并发射自定义Node.js事件 EventEmitter介绍 EventEmitter常用的API error事件 继承EventEm ...

  7. T-SQL 实现行转列

    问题: 我正在寻找一种有效的方式将行转换为SQL服务器中的列 例如,通过下表如何构建出预期结果表. Id  Value   ColumnName 1   John    FirstName 2   2 ...

  8. Oracle基础——学习笔记

    一[用户]sys\system\sysman\scott 1.查看数据库所有用户(dba_users数据字典): select username from dba_users; 2.查看当前用户: s ...

  9. web工程常用路径的获取方法

    此文章是基于 搭建SpringMVC+Spring+Hibernate平台 一. 利用 Spring 取得web工程根路径 1. web.xml 中添加如下: <context-param> ...

  10. easyUI的基础布局

    <html> <head> <meta http-equiv="Content-Type" content="text/html; char ...