记得第一次接触手写数字识别数据集还在学习TensorFlow,各种sess.run(),头都绕晕了。自从接触pytorch以来,一直想写点什么。曾经在2017年5月,Andrej Karpathy发表的一篇Twitter,调侃道:l've been using PyTorch a few months now, l've never felt better, l've more energy.My skin is clearer. My eye sight has improved。确实,使用pytorch以来,确实感觉心情要好多了,不像TensorFlow那样晦涩难懂。迫不及待的用pytorch实战了一把MNIST数据集,构建LeNet神经网络。话不多说,直接上代码!

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import datasets,transforms
import torchvision
from torch.autograd import Variable
from torch.utils.data import DataLoader
import cv2 class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(1, 6, 3, 1, 2),
nn.ReLU(),
nn.MaxPool2d(2, 2)
) self.conv2 = nn.Sequential(
nn.Conv2d(6, 16, 5),
nn.ReLU(),
nn.MaxPool2d(2, 2)
) self.fc1 = nn.Sequential(
nn.Linear(16 * 5 * 5, 120),
nn.BatchNorm1d(120),
nn.ReLU()
) self.fc2 = nn.Sequential(
nn.Linear(120, 84),
nn.BatchNorm1d(84),#加快收敛速度的方法(注:批标准化一般放在全连接层后面,激活函数层的前面)
nn.ReLU()
) self.fc3 = nn.Linear(84, 10) # self.sfx = nn.Softmax() def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
# print(x.shape)
x = x.view(x.size()[0], -1)
x = self.fc1(x)
x = self.fc2(x)
x = self.fc3(x)
# x = self.sfx(x)
return x device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
batch_size = 64
LR = 0.001
Momentum = 0.9 # 下载数据集
train_dataset = datasets.MNIST(root = './data/',
train=True,
transform = transforms.ToTensor(),
download=False)
test_dataset =datasets.MNIST(root = './data/',
train=False,
transform=transforms.ToTensor(),
download=False)
#建立一个数据迭代器
train_loader = torch.utils.data.DataLoader(dataset = train_dataset,
batch_size = batch_size,
shuffle = True)
test_loader = torch.utils.data.DataLoader(dataset = test_dataset,
batch_size = batch_size,
shuffle = False) #实现单张图片可视化
# images,labels = next(iter(train_loader))
# img = torchvision.utils.make_grid(images)
# img = img.numpy().transpose(1,2,0)
# # img.shape
# std = [0.5,0.5,0.5]
# mean = [0.5,0.5,0.5]
# img = img*std +mean
# cv2.imshow('win',img)
# key_pressed = cv2.waitKey(0) net = LeNet().to(device)
criterion = nn.CrossEntropyLoss()#定义损失函数
optimizer = optim.SGD(net.parameters(),lr=LR,momentum=Momentum) epoch = 1
if __name__ == '__main__':
for epoch in range(epoch):
sum_loss = 0.0
for i, data in enumerate(train_loader):
inputs, labels = data
inputs, labels = Variable(inputs).cuda(), Variable(labels).cuda()
optimizer.zero_grad()#将梯度归零
outputs = net(inputs)#将数据传入网络进行前向运算
loss = criterion(outputs, labels)#得到损失函数
loss.backward()#反向传播
optimizer.step()#通过梯度做一步参数更新 # print(loss)
sum_loss += loss.item()
if i % 100 == 99:
print('[%d,%d] loss:%.03f' % (epoch + 1, i + 1, sum_loss / 100))
sum_loss = 0.0 #验证测试集
net.eval()#将模型变换为测试模式
correct = 0
total = 0
for data_test in test_loader:
images, labels = data_test
images, labels = Variable(images).cuda(), Variable(labels).cuda()
output_test = net(images)
# print("output_test:",output_test.shape) _, predicted = torch.max(output_test, 1)#此处的predicted获取的是最大值的下标
# print("predicted:",predicted.shape)
total += labels.size(0)
correct += (predicted == labels).sum()
print("correct1: ",correct)
print("Test acc: {0}".format(correct.item() / len(test_dataset)))#.cpu().numpy()

本次识别手写数字,只做了1个epoch,train_loss:0.250,测试集上的准确率:0.9685,相当不错的结果。

Pytorch1.0入门实战一:LeNet神经网络实现 MNIST手写数字识别的更多相关文章

  1. keras—神经网络CNN—MNIST手写数字识别

    from keras.datasets import mnist from keras.utils import np_utils from plot_image_1 import plot_imag ...

  2. 基于tensorflow的MNIST手写数字识别(二)--入门篇

    http://www.jianshu.com/p/4195577585e6 基于tensorflow的MNIST手写字识别(一)--白话卷积神经网络模型 基于tensorflow的MNIST手写数字识 ...

  3. mnist手写数字识别——深度学习入门项目(tensorflow+keras+Sequential模型)

    前言 今天记录一下深度学习的另外一个入门项目——<mnist数据集手写数字识别>,这是一个入门必备的学习案例,主要使用了tensorflow下的keras网络结构的Sequential模型 ...

  4. Pytorch入门——手把手教你MNIST手写数字识别

    MNIST手写数字识别教程 要开始带组内的小朋友了,特意出一个Pytorch教程来指导一下 [!] 这里是实战教程,默认读者已经学会了部分深度学习原理,若有不懂的地方可以先停下来查查资料 目录 MNI ...

  5. 【TensorFlow-windows】(四) CNN(卷积神经网络)进行手写数字识别(mnist)

    主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64. ...

  6. C#中调用Matlab人工神经网络算法实现手写数字识别

    手写数字识别实现 设计技术参数:通过由数字构成的图像,自动实现几个不同数字的识别,设计识别方法,有较高的识别率 关键字:二值化  投影  矩阵  目标定位  Matlab 手写数字图像识别简介: 手写 ...

  7. 利用卷积神经网络实现MNIST手写数据识别

    代码: import torch import torch.nn as nn import torch.utils.data as Data import torchvision # 数据库模块 im ...

  8. Tensorflow项目实战一:MNIST手写数字识别

    此模型中,输入是28*28*1的图片,经过两个卷积层(卷积+池化)层之后,尺寸变为7*7*64,将最后一个卷积层展成一个以为向量,然后接两个全连接层,第一个全连接层加一个dropout,最后一个全连接 ...

  9. 吴裕雄 python 神经网络——TensorFlow 循环神经网络处理MNIST手写数字数据集

    #加载TF并导入数据集 import tensorflow as tf from tensorflow.contrib import rnn from tensorflow.examples.tuto ...

随机推荐

  1. nlp L1

    前向最大匹配: 最大匹配出的词必须保证下一个扫描不是词表中的词或词的前缀才可以结束. 正向最大匹配算法:从左到右将待分词文本中的几个连续字符与词表匹配,如果匹配上,则切分出一个词.但这里有一个问题:要 ...

  2. .Net QQ互联教程

    qq互联只需要备案即可申请,申请成功后可以到qq互联官网查看教程,本站开始想使用js的教程但是由于本站需要绑定本站的账号用js教程无法完成,所以使用原始的oauth2.0来完成. 申请qq互联接口 q ...

  3. STM32CubeMX+Keil裸机代码风格(1)

    1.打开STM32CubeMX,New project 选好自己要用的芯片 2.选上左侧SYS中的debug Serial Wire(定义烧程序的端口) . 3,选上左侧TIM6,使TIM6可用(TI ...

  4. 与http协作的web服务器--代理、网关、隧道

    一台服务器可以搭建多个web站点 代理: 接受客户端发送的请求,转发给其他服务器,然后接受服务器的返回结果(响应)再返回给客户端.每次经过代理服务器,就会追加写入via首部信息. 按两种基准分类.一种 ...

  5. UE4物理动画使用

    Rigid Body Body的创建. 对重要骨骼创建Body,保证Body控制的是表现和变化比较大的骨骼. 需要对Root创建Body并绑定,设置为Kinematic且不启用物理.原因是UPrimi ...

  6. (二)Javascript面向对象编程:构造函数的继承

    Javascript面向对象编程:构造函数的继承   这个系列的第一部分,主要介绍了如何"封装"数据和方法,以及如何从原型对象生成实例. 今天要介绍的是,对象之间的"继承 ...

  7. Linux下安装GEOS环境

    1.下载对应版本的geos源码:http://download.osgeo.org/geos/ 2.下载后使用cd切换到源码目录解压:tar -xvf geosXXX.tar.gz 3.切换到解压后目 ...

  8. spring mvc jsonp调用示例

    服务端代码:主要是返回的时候,返回值要用callback包装一下 /** * JSONP调用 * * @param request * @return */ @RequestMapping(" ...

  9. 逆水行舟 —— MyBatis

    第一轮总结性笔记 这是一个很漫长的过程,我买了套课程,将在日后记录学习笔记,取名为逆水行舟系列 MyBatis的基础 根据MyBatis的官方介绍: 整个测试项目结构如下:使用Maven架构项目 po ...

  10. Android 关于解决MediaButton学习到的media控制流程

    问题背景:话机连接了头戴式的耳机,在通话过程中短按按钮是挂断电话,长按按钮是通话静音.客户需求是把长按改成挂断功能,短按是静音功能. android版本:8.1 在通话中,测试打印信息,可以看到but ...