凸包(Convex Hull)

在图形学中,凸包是一个非常重要的概念。简明的说,在平面中给出N个点,找出一个由其中某些点作为顶点组成的凸多边形,恰好能围住所有的N个点。

这十分像是在一块木板上钉了N个钉子,然后用一根绷紧的橡皮筋它们都圈起来,这根橡皮筋的形状就是所谓的凸包。

计算凸包的一个著名算法是Graham Scan法,它的时间复杂度与所采用的排序算法时间复杂度相同,通常采用线性对数算法,因此为\( O\left(N\mathrm{log}\left(N\right)\right) \)。

1. 找到所有点\( P_{0,1,...,N-1} \)中最下方的点,记为\( P_{L} \);

2. 计算所有其他的点\( P_{i}\left(i\neq L\right) \) 与 \( P_{L} \)构成的向量\( \overrightarrow{P_{L}P_{i}} \)相对于水平轴的夹角。因为所有的点都在该\( P_{L} \)上方,因此向量的取值范围为\( \left(0, 180\right) \) ,所以可以用余切值代替角度值;

3. 对所有其他的点按照第2步算出的角度进行排序,且\( P_{L} \)为排序后的数组的第0位;

4. 从点\( P_{L} \)开始,依此连接每一个点(已经排序过),每连接一个点检测连线的走向是否是逆时针的,如果是则留下该点的前一个点,反之去除前一个点,使之与前面第二个点直接连接,继续这一检测,直到是逆时针或者所有点都被检测过为止。

判断三个点依此连成两条线段走向是否为逆时针,用这两条线段向量的叉积判断:叉积>0,逆时针;反之顺时针或者共线。

这里采用Qt 5.7实现了一个算法的演示程序,其中算法的部分如下(由于在Qt的坐标系中,y向下增长,因此在计算纵坐标差值时需要取相反数)。

void DisplayWidget::calConvexHull()
{
int size = m_points.size();
if (size < )
{
return;
} // First: find the lowest point
int maxY = ;
int indexOfLowest = -;
for (int i = ; i < size; i++)
{
if (m_points.at(i).y() > maxY)
{
maxY = m_points.at(i).y();
indexOfLowest = i;
}
} std::swap(*m_points.begin(), *(m_points.begin() + indexOfLowest));
QPoint &lowestPoint = *(m_points.begin()); // Second: calculate ctan(angles)
double *ctanAngles = new double[size];
for (int i = ; i < size; i++)
{
double deltaY = lowestPoint.y() - m_points.at(i).y() + DBL_EPSILON;
double deltaX = m_points.at(i).x() - lowestPoint.x();
ctanAngles[i] = deltaX / deltaY;
} // Third: Sort subscript
int *subscript = new int[size];
for (int i = ; i < size; i++)
{
subscript[i] = i;
}
std::sort(subscript + , subscript + size, [ctanAngles](int a1, int a2) { return ctanAngles[a2] < ctanAngles[a1]; }); // Fourth: Calculate convex hull
std::vector<QPoint> convexHullPoints;
convexHullPoints.push_back(*m_points.begin());
convexHullPoints.push_back(m_points.at(subscript[])); for (int i = ; i < size; i++)
{
convexHullPoints.push_back(m_points.at(subscript[i]));
while (convexHullPoints.size() > &&
!isAnticlockwise(*(convexHullPoints.end() - ), *(convexHullPoints.end() - ), *(convexHullPoints.end() - )))
{
*(convexHullPoints.end() - ) = *(convexHullPoints.end() - );
convexHullPoints.pop_back();
}
} m_convexHullPoints = std::move(convexHullPoints); delete[] ctanAngles;
delete[] subscript;
}

效果如下:

 

程序源码:http://files.cnblogs.com/files/HolyChen/ConvexHull.rar

凸包(Convex Hull)构造算法——Graham扫描法的更多相关文章

  1. opencv::凸包-Convex Hull

    概念介绍 什么是凸包(Convex Hull),在一个多变形边缘或者内部任意两个点的连线都包含在多边形边界或者内部. 正式定义:包含点集合S中所有点的最小凸多边形称为凸包 Graham扫描算法 首先选 ...

  2. [POJ1113&POJ1696]凸包卷包裹算法和Graham扫描法应用各一例

    凸包的算法比较形象好理解 代码写起来也比较短 所以考前看一遍应该就没什么问题了..>_< POJ1113 刚开始并没有理解为什么要用凸包,心想如果贴着城堡走不是更好吗? 突然发现题目中有要 ...

  3. 计算几何 : 凸包学习笔记 --- Graham 扫描法

    凸包 (只针对二维平面内的凸包) 一.定义 简单的说,在一个二维平面内有n个点的集合S,现在要你选择一个点集C,C中的点构成一个凸多边形G,使得S集合的所有点要么在G内,要么在G上,并且保证这个凸多边 ...

  4. OpenCV入门之寻找图像的凸包(convex hull)

    介绍   凸包(Convex Hull)是一个计算几何(图形学)中的概念,它的严格的数学定义为:在一个向量空间V中,对于给定集合X,所有包含X的凸集的交集S被称为X的凸包.   在图像处理过程中,我们 ...

  5. (模板)graham扫描法、andrew算法求凸包

    凸包算法讲解:Click Here 题目链接:https://vjudge.net/problem/POJ-1113 题意:简化下题意即求凸包的周长+2×PI×r. 思路:用graham求凸包,模板是 ...

  6. 凸包算法(Graham扫描法)详解

    先说下基础知识,不然不好理解后面的东西 两向量的X乘p1(x1,y1),p2(x2,y2) p1Xp2如果小于零则说明  p1在p2的逆时针方向 如果大于零则说明 p1在p2的顺时针方向 struct ...

  7. Graham 扫描法找凸包(convexHull)

    凸包定义 通俗的话来解释凸包:给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点  Graham扫描法 由最底的一点 \(p_1\) 开始(如果有多个这样的点, ...

  8. 关于graham扫描法求凸包的小记

    1.首先,凸包是啥: 若是在二维平面上,则一般的,给定二维平面上的点集,凸包就是将最外层的点连接起来构成的凸多边型,它能包含点集中所有的点. ───────────────────────────── ...

  9. Monotone Chain Convex Hull(单调链凸包)

    Monotone Chain Convex Hull(单调链凸包)算法伪代码: //输入:一个在平面上的点集P //点集 P 按 先x后y 的递增排序 //m 表示共a[i=0...m]个点,ans为 ...

随机推荐

  1. 安装ORACLE后,改变计算机名称,导致OracleDBConsoleOrcl服务无法启动

    错误信息: 启动oracledbconsoleorcl 服务提示 -- “--Windows不能再本地计算机启动oracledbconsoleorcl  有关更多信息,查阅系统事件日志,如果这是非Mi ...

  2. JMM & synchronized概述(转)

    根据Java语言规范中的说明,JVM系统中存在一个主内存(Main Memory),Java中所有的变量存储在主内存中,对于所有的线程是共享的(相当于黑板,其他人都可以看到的).每个线程都有自己的工作 ...

  3. c# 甘蔗斗地主1.4存档修改器

           using System; using System.Collections.Generic; using System.ComponentModel; using System.Dat ...

  4. VS2013 越来越慢

    Q.VS2013 原来启动只要大概 一两秒的时间,现在启动最少也得十秒以上.而且打开项目也变得很慢了!求解决方案. 清理一下缓存就好了.devenv.exe /resetuserdata 第二:装了v ...

  5. PLSQL_性能优化系列01_Oracle Index索引

    2014-06-01 Created By BaoXinjian

  6. winform属性

    WinForm为客户端程序必须在.NET Framework框架上运行 一.常用属性: 布局: AutoScroll:当控件内容超出可见区域是否显示滚动条: Autosize:当控件内容有超出时是否自 ...

  7. py继续

    这个正则里面有引号,我外面在一个引号就出问题了,应该怎么处理 用双引号

  8. 获取js提交数据

    无论是ajax(以XMLHttpRequest方式传输)还是表单的Get或Post方式提交(以HTTP方式传输),在asp.net中,get都是通过Request.QueryString[" ...

  9. google protobuf 简单实例

    1.定义proto文件: User.proto package netty; option java_package="myprotobuf"; option java_outer ...

  10. ruby 使用Struct场景

    替代类使用,节省代码,清晰简洁 使用Struct SelectOption = Struct.new(:display, :value) do def to_ary [display, value] ...