转载 http://blog.csdn.net/cubesky/article/details/38682975

前面发了一篇关于unity Matrix的文章。

http://blog.csdn.net/cubesky/article/details/38664143

其中对于一般的Matrix可以说应该有一个清晰的了解了。但是对于UNITY_MATRIX_IT_MV这些matrix估计理解起来还是比较有问题。这里再重点描述一下UNITY_MATRIX_IT_MV。

首先,我们看一下unity中Doc中的描述:

UNITY_MATRIX_IT_MV float4x4 Inverse transpose of model * view matrix.

然后我们来看一下UNITY_MATRIX_IT_MV实际的变换意义

The transpose of World2Object is the transpose of the inverse of the Object2World matrix.

  • MV transforms points from object to eye space
  • IT_MV rotates normals from object to eye space

And similarly:

  • Object2World transforms points from object to world space
  • IT_Object2World (which, as you point out, is the transpose of World2Object) rotates normals from object to world space

If it is orthogonal, the upper-left 3x3 of Object2World will be equal to that of IT_Object2World, and so will also rotate normals from object to world space.

上面这里很好的描述了UNITY_MATRIX_IT_MV的使用场景,专门针对法线进行变换。但是为什么法线的变换和定点不一样呢?让我们来看一篇推导的文章。

The gl_NormalMatrix is present in many vertex shaders. In here some light is shed on what is this matrix and what is it for. This section was inspired by the excellent book by Eric Lengyel “Mathematics for 3D Game Programming and Computer Graphics”.

Many computations are done in eye space. This has to do with the fact that lighting is commonly performed in this space, otherwise eye position dependent effects, such as specular lights would be harder to implement.

Hence we need a way to transform the normal into eye space. To transform a vertex to eye space we can write:

	vertexEyeSpace = gl_ModelViewMatrix * gl_Vertex;

So why can’t we just do the same with a normal vector? A normal is a vector of 3 floats and the modelview matrix is 4×4. Secondly, since the normal is a vector, we only want to transform its orientation. The region of the modelview matrix that contains the orientation is the top left 3×3 submatrix. So why not multiply the normal by this submatrix?

This could be easily achieved with the following code:

	normalEyeSpace = vec3(gl_ModelViewMatrix * vec4(gl_Normal,0.0));

So, gl_NormalMatrix is just a shortcut to simplify code writing or to optimize it? No, not really. The above line of code will work in some circumstances but not all.

Lets have a look at a potential problem:

;

In the above figure we see a triangle, with a normal and a tangent vectors. The following figure shows what happens when the modelview matrix contains a non-uniform scale.

Note: if the scale was uniform, then the direction of the normal would have been preserved, The length would have been affected but this can be easily fixed with a normalization.

In the above figure the Modelview matrix was applied to all the vertices as well as to the normal and the result is clearly wrong: the transformed normal is no longer perpendicular to the surface.

We know that a vector can be expressed as the difference between two points. Considering the tangent vector, it can be computed as the difference between the two vertices of the triangle’s edge. If  and  are the vertices that define the edge we know that:

Considering that a vector can be written as a four component tuple with the last component set to zero, we can multiply both sides of the equality with the Modelview matrix

This results in

As  and  are the vertices of the transformed triangle,  remains tangent to the edge of the triangle. Hence, the Modelview preserves tangents, yet it does not preserve normals.

Considering the same approach used for vector T, we can find two points  and  such that

The main issue is that the a vector defined through the transformed points, , does not necessarily remain normal, as shown in the figures above. The normal vector is not defined as a difference between two points, as the tangent vector, it is defined as a vector which is perpendicular to a surface.

So now we know that we can’t apply the Modelview in all cases to transform the normal vector. The question is then, what matrix should we apply?

Consider a 3×3 matrix G, and lets see how this matrix could be computed to properly transform the normal vectors.

We know that, prior to the matrix transformation T.N = 0, since the vectors are by definition perpendicular. We also know that after the transformation N’.T’ must remain equal to zero, since they must remain perpendicular to each other. T can be multiplied safely by the upper left 3×3 submatrix of the modelview (T is a vector, hence the w component is zero), let’s call this submatrix M.

Let’s assume that the matrix G is the correct matrix to transform the normal vector. T. Hence the following equation:

The dot product can be transformed into a product of vectors, therefore:

Note that the transpose of the first vector must be considered since this is required to multiply the vectors. We also know that the transpose of a multiplication is the multiplication of the transposes, hence:

We started by stating that the dot product between N and T was zero, so if

then we have

Which is exactly what we want. So we can compute G based on M.

Therefore the correct matrix to transform the normal is the transpose of the inverse of the M matrix. OpenGL computes this for us in the gl_NormalMatrix.

In the beginning of this section it was stated that using the Modelview matrix would work in some cases. Whenever the 3×3 upper left submatrix of the Modelview is orthogonal we have:

This is because with an orthogonal matrix, the transpose is the same as the inverse. So what is an orthogonal matrix? An orthogonal matrix is a matrix where all columns/rows are unit length, and are mutually perpendicular. This implies that when two vectors are multiplied by such a matrix, the angle between them after transformation by an orthogonal matrix is the same as prior to that transformation. Simply put the transformation preserves the angle relation between vectors, hence transformed normals remain perpendicular to tangents! Furthermore it preserves the length of the vectors as well.

So when can we be sure that M is orthogonal? When we limit our geometric operations to rotations and translations, i.e. when in the OpenGL application we only use glRotate and glTranslate and not glScale. These operations guarantee that M is orthogonal. Note: gluLookAt also creates an orthogonal matrix!

注:之所以法线不能直接使用UNITY_MATRIX_MV进行变换,是因为法线是向量,具有方向,在进行空间变换的时候,如果发生非等比缩放,方向会发生偏移。为什么呢?拿上面的例子来说,我们可以简单的把法线和切线当成三角形的两条边,显然,三角形在空间变换的时候,不管是平移,还是旋转,或者是等比缩放,都不会变形,但是如果非等比缩放,就会发生拉伸。所以法线和切线的夹角也就会发生变化。(而切线在变换前后,方向总是正确的,所以法线方向就不正确了)。

参考:

http://www.lighthouse3d.com/tutorials/glsl-tutorial/the-normal-matrix/

http://forum.unity3d.com/threads/_object2world-or-unity_matrix_it_mv.112446/

http://www.cnblogs.com/kesalin/archive/2012/12/06/3D_math.html

UNITY_MATRIX_IT_MV[Matrix] (转载)的更多相关文章

  1. UNITY_MATRIX_IT_MV[Matrix]

    http://blog.csdn.net/cubesky/article/details/38682975 前面发了一篇关于unity Matrix的文章. http://blog.csdn.NET/ ...

  2. 矩阵乘法C语言实现

    /* 矩阵乘法C语言实现 Slyar 2009.3.20 */   #include <stdio.h> #include <stdlib.h>   /* 给 int 类型定义 ...

  3. [转载]Matrix类的使用

    2013-12-18 11:31:00 转载自: http://www.cnblogs.com/mmy0925/archive/2013/01/22/2871009.html 在Android中,对图 ...

  4. Android图片处理(Matrix,ColorMatrix) - 转载

    Android图片处理(Matrix,ColorMatrix) 转载自:http://www.cnblogs.com/leon19870907/articles/1978065.html 在编程中有时 ...

  5. <转载> OpenGL Projection Matrix

    原文 OpenGL Projection Matrix Related Topics: OpenGL Transformation Overview Perspective Projection Or ...

  6. Android中Matrix的pre post set方法理解(转载来源:Linux社区 作者:zjmdp)

    虽说以前学习过线性代数和图形学原理,但是在实际中碰到matrix还是疑惑了好一阵子,今天通过向同事请教终于找到一点门路,特总结如下: Matrix主要用于对平面进行缩放,平移,旋转以及倾斜操作,为简化 ...

  7. Atitit Data Matrix dm码的原理与特点

    Atitit Data Matrix dm码的原理与特点 Datamatrix原名Datacode,由美国国际资料公司(International Data Matrix, 简称ID Matrix)于 ...

  8. 【转】What is an SDET? Part 2 – Skill Matrix of SDET

    What is an SDET? Part 2 ---- Skill Matrix of SDET (Instead of naming it as part 2 of What is an SDET ...

  9. paper 131:【图像算法】图像特征:GLCM【转载】

    转载地址:http://www.cnblogs.com/skyseraph/archive/2011/08/27/2155776.html 一 原理 1 概念:GLCM,即灰度共生矩阵,GLCM是一个 ...

随机推荐

  1. Keil的使用方法 - 常用功能(一)

    Ⅰ.概述 学习一门软件的开发,开发工具的掌握可以说尤为重要.由于Keil集成开发工具支持多种MCU平台的开发,是市面上比较常见的,也是功能比较强大一款IDE.所以,对于大多数人说,选择Keil几乎是单 ...

  2. Moses创建一个翻译系统的基本过程记录,以后会按照每个过程详细说明,并给出每个步骤的参数说明

    软件需求: 首先你必须要有Moses(废话哈哈).然后要有GIZA++用作词对齐(traning-model.perl的时候会用到).IRSTLM产生语言模型 大致步骤: 大体的步骤如下: 准备Par ...

  3. 【Cocoa】 Initializing View Instances Created in Interface Builder

    Initializing View Instances Created in Interface Builder View instances that are created in Interfac ...

  4. [转]从普通DLL中导出C++类 – dllexport和dllimport的使用方法(中英对照、附注解)

      这几天写几个小程序练手,在准备将一个类导出时,发现还真不知道如果不用MFC的扩展DLL,是怎么导出的.但我知道dllexport可以导出函数和变量,而且MFC扩展DLL就算是使用了MFC的功能,但 ...

  5. 窗体皮肤实现 - 实现简单Toolbar(六)

    自定义皮肤很方便,基础开发的工作也是很大的.不过还好一般产品真正需要开发的并不是很多.现在比较漂亮的界面产品都会有个大大的工具条. Toolbar工具条实现皮肤的方法还是可以使用Form的处理方案.每 ...

  6. hdu 5104 Primes Problem

    题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=5104 Primes Problem Description Given a number n, ple ...

  7. Android 解决图片大量下载:软引用必须懂4点

    1.对象的强.软.弱和虚引用为了能更加灵活控制对象的生命周期,需要知道对象引用的4中级别,由高到低依次为 :强引用.软引用.弱引用和虚引用 备注: 这四种的区别: ⑴强引用(StrongReferen ...

  8. Eclipse常用快捷键使用

    Eclipse的编辑功能非常强大,掌握了Eclipse快捷键功能,能够大大提高开发效率.Eclipse中有如下一些和编辑相关的快捷键.     1. [ALT+/]     此快捷键为用户编辑的好帮手 ...

  9. http压力测试

    一.http_load程序非常小,解压后也不到100Khttp_load以并行复用的方式运行,用以测试web服务器的吞吐量与负载.但是它不同于大多数压力测试工具,它可以以一个单一的进程运行,一般不会把 ...

  10. 利用LibreOffice转换ppt、doc转化pdf

    利用LibreOffice转换ppt.doc转化pdf LibreOffice下载地址:  http://www.libreoffice.org/download/libreoffice-fresh/ ...