JZOJ 3494. 【NOIP2013模拟联考13】线段(segment)
题目
数轴上有很多单位线段,一开始时所有单位线段的权值都是 \(1\)。有两种操作,第一种操作将某一区间内的单位线段权值乘以 \(w\),第二种操作将某一区间内的单位线段权值取 \(w\) 次幂。并且你还需要回答一些询问,每个询问需要求出某一区间的单位线段权值之积。由于答案可能很大,你只需要求出答案 \(mod (10^9+7)\) 的值。
说明:\(n\) 个点只有 \(n-1\) 条线段。
分析
线段树懒标记基本操作
幂运算优先,然后乘法运算
对于 \([-10^9,10^9]\) 的操作区间,直接动态开点就好了
离散化随你
注意:介于操作数乘起来很大,指数是不能随便取模的,所以我们需要扩展欧拉定理
即:
a^c \equiv a^c \texttt{ gcd(a,m)!=1 && c<m} \\
a^c \equiv a^{c \% \varphi(m)+\varphi(m)} \texttt{ gcd(a,m)!=1 && c>m}
\]
\(Code\)
#include<cstdio>
#define LL long long
using namespace std;
const int N = 2e6 + 5 , Ml = -1e9 , Mr = 1e9;
const LL P = 1e9 + 7 , phi = 1e9 + 6;
int n , sz = 1;
struct segment{
LL sum , tg1 , tg2;
int ls , rs;
}seg[N];
LL fpow(LL x , LL y)
{
LL res = 1;
for(; y; y >>= 1)
{
if (y & 1) res = res * x % P;
x = x * x % P;
}
return res;
}
void New(int k , int o)
{
if (!o)
{
if (!seg[k].ls)
seg[seg[k].ls = ++sz] = segment{1 , 1 , 1 , 0 , 0};
}
else
{
if (!seg[k].rs)
seg[seg[k].rs = ++sz] = segment{1 , 1 , 1 , 0 , 0};
}
}
void pushup(int k)
{
seg[k].sum = seg[seg[k].ls].sum * seg[seg[k].rs].sum % P;
}
void pushdown(int k , int l , int r)
{
if (seg[k].tg2 != 1)
{
New(k , 0) , New(k , 1);
seg[seg[k].ls].sum = fpow(seg[seg[k].ls].sum , seg[k].tg2);
seg[seg[k].rs].sum = fpow(seg[seg[k].rs].sum , seg[k].tg2);
seg[seg[k].ls].tg2 = seg[seg[k].ls].tg2 * seg[k].tg2 % phi;
seg[seg[k].rs].tg2 = seg[seg[k].rs].tg2 * seg[k].tg2 % phi;
seg[seg[k].ls].tg1 = fpow(seg[seg[k].ls].tg1 , seg[k].tg2);
seg[seg[k].rs].tg1 = fpow(seg[seg[k].rs].tg1 , seg[k].tg2);
seg[k].tg2 = 1;
}
if (seg[k].tg1 != 1)
{
int mid = (l + r) >> 1;
New(k , 0) , New(k , 1);
seg[seg[k].ls].sum = seg[seg[k].ls].sum * fpow(seg[k].tg1 , mid - l + 1) % P;
seg[seg[k].rs].sum = seg[seg[k].rs].sum * fpow(seg[k].tg1 , r - mid) % P;
seg[seg[k].ls].tg1 = seg[seg[k].ls].tg1 * seg[k].tg1 % P;
seg[seg[k].rs].tg1 = seg[seg[k].rs].tg1 * seg[k].tg1 % P;
seg[k].tg1 = 1;
}
}
void seg_mul(int l , int r , int k , int x , int y , int z)
{
if (x <= l && r <= y)
{
seg[k].sum = seg[k].sum * fpow(z , r - l + 1) % P;
seg[k].tg1 = seg[k].tg1 * z % P;
return;
}
pushdown(k , l , r);
int mid = (l + r) >> 1;
if (x <= mid) New(k , 0) , seg_mul(l , mid , seg[k].ls , x , y , z);
if (y > mid) New(k , 1) , seg_mul(mid + 1 , r , seg[k].rs , x , y , z);
pushup(k);
}
void seg_pow(int l , int r , int k , int x , int y , int z)
{
if (x <= l && r <= y)
{
seg[k].sum = fpow(seg[k].sum , z);
seg[k].tg1 = fpow(seg[k].tg1 , z) , seg[k].tg2 = seg[k].tg2 * z % phi;
return;
}
pushdown(k , l , r);
int mid = (l + r) >> 1;
if (x <= mid) New(k , 0) , seg_pow(l , mid , seg[k].ls , x , y , z);
if (y > mid) New(k , 1) , seg_pow(mid + 1 , r , seg[k].rs , x , y , z);
pushup(k);
}
LL seg_query(int l , int r , int k , int x , int y)
{
if (x <= l && r <= y) return seg[k].sum;
pushdown(k , l , r);
int mid = (l + r) >> 1; LL res = 1;
if (x <= mid && seg[k].ls) res = seg_query(l , mid , seg[k].ls , x , y);
if (y > mid && seg[k].rs) res = res * seg_query(mid + 1 , r , seg[k].rs , x , y) % P;
return res;
}
int main()
{
freopen("segment.in" , "r" , stdin);
freopen("segment.out" , "w" , stdout);
scanf("%d" , &n);
int op , l , r , w;
seg[0] = seg[1] = segment{1 , 1 , 1 , 0 , 0};
while (n--)
{
scanf("%d%d%d" , &op , &l , &r) , ++l;
if (op == 0) scanf("%d" , &w) , seg_mul(Ml , Mr , 1 , l , r , w);
else if (op == 1) scanf("%d" , &w) , seg_pow(Ml , Mr , 1 , l , r , w);
else printf("%lld\n" , seg_query(Ml , Mr , 1 , l , r));
}
}
JZOJ 3494. 【NOIP2013模拟联考13】线段(segment)的更多相关文章
- JZOJ 3493. 【NOIP2013模拟联考13】三角形
3493. [NOIP2013模拟联考13]三角形(triangle) (File IO): input:triangle.in output:triangle.out Time Limits: 10 ...
- JZOJ【NOIP2013模拟联考14】隐藏指令
JZOJ[NOIP2013模拟联考14]隐藏指令 题目 Description 在d维欧几里得空间中,指令是一个长度为2N的串.串的每一个元素为d个正交基的方向及反方向之一.例如,d = 1时(数轴) ...
- JZOJ 3487. 【NOIP2013模拟联考11】剑与魔法(dragons)
3487. [NOIP2013模拟联考11]剑与魔法(dragons) (Standard IO) Time Limits: 1000 ms Memory Limits: 131072 KB De ...
- JZOJ 3470. 【NOIP2013模拟联考8】最短路(path)
470. [NOIP2013模拟联考8]最短路(path) (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Detailed ...
- JZOJ 3463. 【NOIP2013模拟联考5】军训
3463. [NOIP2013模拟联考5]军训(training) (Standard IO) Time Limits: 2000 ms Memory Limits: 262144 KB Deta ...
- JZOJ 3462. 【NOIP2013模拟联考5】休息(rest)
3462. [NOIP2013模拟联考5]休息(rest) (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Detailed ...
- JZOJ 3461. 【NOIP2013模拟联考5】小麦亩产一千八(kela)
3461. [NOIP2013模拟联考5]小麦亩产一千八(kela) (Standard IO) Time Limits: 1000 ms Memory Limits: 262144 KB Det ...
- 【NOIP2013模拟联考7】OSU
[NOIP2013模拟联考7]OSU 描述 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: 一共有n次操作,每次操作只有成功与失败之分, ...
- [jzoj]3468.【NOIP2013模拟联考7】OSU!(osu)
Link https://jzoj.net/senior/#main/show/3468 Description osu 是一款群众喜闻乐见的休闲软件. 我们可以把osu的规则简化与改编成以下的样子: ...
- [jzoj]3456.【NOIP2013模拟联考3】恭介的法则(rule)
Link https://jzoj.net/senior/#main/show/3456 Description 终于,在众亲们的奋斗下,最终boss 恭介被关进了库特设计的密室.正当她们松了一口气时 ...
随机推荐
- python实现AES加密解密
1. 前言 AES是一种对称加密,所谓对称加密就是加密与解密使用的秘钥是一个. 之前写过一片关于python AES加密解密的文章,但是这里面细节实在很多,这次我从 参数类型.加密模式.编码模式.补全 ...
- whylogs工具库的工业实践!机器学习模型流程与效果监控 ⛵
作者:韩信子@ShowMeAI 机器学习实战系列:https://www.showmeai.tech/tutorials/41 本文地址:https://www.showmeai.tech/artic ...
- 100以内能被7整除的前五个数-Java
import java.util.HashSet; import java.util.Set; public class Demo { //100以内能够被7整除的前五个数 public static ...
- vulnhub靶场渗透实战13-driftingblues3
靶机下载地址:https://download.vulnhub.com/driftingblues/driftingblues3.ova vbox导入,网络模式桥接,靶机模式为简单. 一:信息收集 ...
- 《HTTP权威指南》– 3.HTTP方法和状态码
常见HTTP方法: 常用HTTP方法 描述 是否包含主体 GET 从服务器获取一份文档 否 HEAD 只从服务器获取文档的首部 否 POST 向服务器发送需要处理的数据 是 PUT 将请求的主体部分存 ...
- VMware虚拟机开机黑屏解决方法
挂起时可以看到显示,但是开机就黑屏 解决方法: 命令提示符,鼠标右键点击"命令提示符",弹出菜单之后选择"以管理员身份运行" 在命令提示符窗口中输入" ...
- 13-flask博客项目之restful api详解2-使用
13-flask博客项目之restful api详解1-概念 13-flask博客项目之restful api详解1-概念 Flask-RESTful学习网站 英文:https://flask-res ...
- Jmeter在结果树中查看响应数据为空
今天遇到了一个比较尴尬的问题,吭哧吭哧了大半天,后来咨询了开发SO的一下解决了. 问题: 在调用接口时取样器结果中显示response code:200, response message:OK,但是 ...
- CH9434-MCU代码移植,芯片使用详细说明(附Linux开发资料链接)
简介 CH9434是一款SPI转四串口转接芯片,提供四组全双工的9线异步串口,用于单片机/嵌入式/安卓系统扩展异步串口.提供25路GPIO,以及支持RS485收发控制引脚TNOW.本篇基于STM32F ...
- Spring Boot 3.0横空出世,快来看看是不是该升级了
目录 简介 对JAVA17和JAVA19的支持 record Text Blocks Switch Expressions instanceof模式匹配 Sealed Classes and Inte ...