pytorch学习笔记一之张量
1. 张量¶
1.1. 概述¶
张量(tensor)是pytorch中的一种较为基础的数据结构,类比于numpy中的ndarrays,在pytorch中,张量可以在GPU中进行运算
通过以下命令,我们导入pytorch和numpy:
import torch
import numpy as np
1.2. 张量初始化¶
1.2.1. 直接生成张量¶
data = [[1, 2], [3, 4]]
x_data = torch.tensor(data)
x_data
tensor([[1, 2],
[3, 4]])
1.2.2. ndarrays转化¶
np_array = np.array(data)
x_np = torch.from_numpy(np_array)
x_np
tensor([[1, 2],
[3, 4]])
1.2.3. 通过已有张量生成¶
继承结构与数据类型:
x_ones = torch.ones_like(x_data)
x_ones
tensor([[1, 1],
[1, 1]])
继承结构,改变数据类型:
x_rand = torch.rand_like(x_data, dtype=torch.float)
x_rand
tensor([[0.9849, 0.3644],
[0.0800, 0.2939]])
1.2.4. 指定维数生成张量¶
用元组类型的数据指定维数:
shape = (2, 3)
生成张量:
torch.ones(shape)
tensor([[1., 1., 1.],
[1., 1., 1.]])
torch.zeros(shape)
tensor([[0., 0., 0.],
[0., 0., 0.]])
torch.rand(shape)
tensor([[0.1744, 0.3771, 0.7969],
[0.7098, 0.9853, 0.3950]])
1.3. 张量属性¶
维数:
x_data.shape
torch.Size([2, 2])
数据类型:
x_data.dtype
torch.int64
存储设备:
x_data.device
device(type='cpu')
1.4. 张量计算¶
GPU对于张量的计算更快,检测GPU是否可用:
torch.cuda.is_available()
False
显然,对于笔者设备来说,由于没有显卡,GPU加速是不可用的,如果设备GPU可用,可以将CPU中的数据导入GPU:
if torch.cuda.is_available():
tensor = x_data.to('cuda')
1.4.1. 索引和切片¶
tensor = torch.ones((3, 4))
tensor
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
类比于ndarrays,tensor也可理解为是一个多维数组,以下表示将tensor变量的第一行、第一列变为0:
tensor[1, 1] = 0
tensor
tensor([[1., 1., 1., 1.],
[1., 0., 1., 1.],
[1., 1., 1., 1.]])
以下表示将tensor变量的第三列变为0:
tensor[:, 3] = 0
tensor
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
1.4.2. 张量的拼接¶
tensor1 = torch.ones((3, 4))
tensor2 = torch.zeros((3, 4))
使用torch.cat()方法,指定维数进行拼接:
torch.cat([tensor1, tensor2], dim=1)
tensor([[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.]])
torch.cat([tensor1, tensor2], dim=0)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
torch.cat([tensor1, tensor2], dim=-1)
tensor([[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.],
[1., 1., 1., 1., 0., 0., 0., 0.]])
torch.cat([tensor1, tensor2], dim=-2)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.]])
torch.cat([tensor1, tensor2, tensor], dim=-2)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[0., 0., 0., 0.],
[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
此处实验 dim = 2 时,有:
torch.cat([tensor1, tensor2], dim=2)
---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
<ipython-input-31-dc57fe12e880> in <module>
----> 1 torch.cat([tensor1, tensor2], dim=2)
IndexError: Dimension out of range (expected to be in range of [-2, 1], but got 2)
根据官网示例,此处dim的取值主要是0和1:
x = torch.randn(2, 3)
torch.cat((x, x, x), 0)
torch.cat((x, x, x), 1)
综上,dim的取值有 -2、-1、0、1,然而-2、-1与0、1的意思似乎是一样的
1.4.3. 张量的乘积与矩阵乘法¶
逐个元素相乘:
tensor.mul(tensor)
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
等价于:
tensor * tensor
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
张量与张量的矩阵乘法:
tensor.matmul(tensor.T)
tensor([[3., 2., 3.],
[2., 2., 2.],
[3., 2., 3.]])
等价于:
tensor @ tensor.T
tensor([[3., 2., 3.],
[2., 2., 2.],
[3., 2., 3.]])
1.4.4. 自动赋值运算¶
自增运算:
tensor
tensor([[1., 1., 1., 0.],
[1., 0., 1., 0.],
[1., 1., 1., 0.]])
tensor.add_(5)
tensor([[6., 6., 6., 5.],
[6., 5., 6., 5.],
[6., 6., 6., 5.]])
tensor
tensor([[6., 6., 6., 5.],
[6., 5., 6., 5.],
[6., 6., 6., 5.]])
复制运算:
tensor.copy_(tensor1)
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
tensor
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
注意:自动赋值运算可以节省内存,但是会导致一些中间过程的问题
1.5. Tensor与Numpy的转换¶
1.5.1. Tensor转换为Numpy¶
tensor
tensor([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]])
np_t = tensor.numpy()
np_t
array([[1., 1., 1., 1.],
[1., 1., 1., 1.],
[1., 1., 1., 1.]], dtype=float32)
tensor.add_(5)
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
np_t
array([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]], dtype=float32)
可见:Tensor和Numpy共用内存,一个改变时另一个也改变
1.5.2. Numpy转Tensor¶
np_t
array([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]], dtype=float32)
tensor
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
t_np = torch.from_numpy(np_t)
t_np
tensor([[6., 6., 6., 6.],
[6., 6., 6., 6.],
[6., 6., 6., 6.]])
np.add(np_t, 1, out=np_t)
array([[7., 7., 7., 7.],
[7., 7., 7., 7.],
[7., 7., 7., 7.]], dtype=float32)
t_np
tensor([[7., 7., 7., 7.],
[7., 7., 7., 7.],
[7., 7., 7., 7.]])
np.add(np_t, 1)
array([[8., 8., 8., 8.],
[8., 8., 8., 8.],
[8., 8., 8., 8.]], dtype=float32)
t_np
tensor([[7., 7., 7., 7.],
[7., 7., 7., 7.],
[7., 7., 7., 7.]])
可见:np.add()指定out=时才会重新赋值
1.6. 参考资料:¶
pytorch学习笔记一之张量的更多相关文章
- [PyTorch 学习笔记] 1.3 张量操作与线性回归
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/linear_regression.py 张量的操作 拼 ...
- [PyTorch 学习笔记] 1.2 Tensor(张量)介绍
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/tensor_introduce1.py https: ...
- Pytorch学习笔记(二)---- 神经网络搭建
记录如何用Pytorch搭建LeNet-5,大体步骤包括:网络的搭建->前向传播->定义Loss和Optimizer->训练 # -*- coding: utf-8 -*- # Al ...
- Pytorch学习笔记(一)---- 基础语法
书上内容太多太杂,看完容易忘记,特此记录方便日后查看,所有基础语法以代码形式呈现,代码和注释均来源与书本和案例的整理. # -*- coding: utf-8 -*- # All codes and ...
- 【pytorch】pytorch学习笔记(一)
原文地址:https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html 什么是pytorch? pytorch是一个基于p ...
- [PyTorch 学习笔记] 1.4 计算图与动态图机制
本章代码:https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson1/computational_graph.py 计算图 深 ...
- [PyTorch 学习笔记] 2.2 图片预处理 transforms 模块机制
PyTorch 的数据增强 我们在安装PyTorch时,还安装了torchvision,这是一个计算机视觉工具包.有 3 个主要的模块: torchvision.transforms: 里面包括常用的 ...
- [PyTorch 学习笔记] 4.3 优化器
本章代码: https://github.com/zhangxiann/PyTorch_Practice/blob/master/lesson4/optimizer_methods.py https: ...
- 【深度学习】Pytorch 学习笔记
目录 Pytorch Leture 05: Linear Rregression in the Pytorch Way Logistic Regression 逻辑回归 - 二分类 Lecture07 ...
- Pytorch学习笔记(二)——Tensor
一.对Tensor的操作 从接口的角度讲,对Tensor的操作可以分为两类: (1)torch.function (2)tensor.function 比如torch.sum(a, b)实际上和a.s ...
随机推荐
- USB口3A限流保护芯片。带短路保护
一般说明 PW1503是超低RDS(ON)开关,具有可编程的电流限制,以保护电源源于过电流和短路情况.它具有超温保护以及反向闭锁功能. PW1503采用薄型(1毫米)5针薄型SOT封装,提供可调版本. ...
- HMS Core 6.8.0版本发布公告
分析服务 ◆ 游戏行业新增"区服分析"埋点模板及分析报告,支持开发者分服务器查看用户付费.留存等指标,可进一步评估不同服务器的玩家质量: ◆ 新增营销活动报告,可查看广告任务带来的 ...
- SpringBoot内置tomcat启动过程及原理
作者:李岩科 1 背景 SpringBoot 是一个框架,一种全新的编程规范,他的产生简化了框架的使用,同时也提供了很多便捷的功能,比如内置 tomcat 就是其中一项,他让我们省去了搭建 tomca ...
- ModuleNotFoundError: No module named 'MySQLdb'
执行命令 python manage.py makemigrations时抛出以下错误 Traceback (most recent call last): File "D:\Program ...
- vue后退页面刷新数据和缓存数据
我们在项目中经常使用this.$router.go(-1) 但是,有时我们需要把前一个页面的数据进行缓存,有时需要刷新数据,下面来记录一下怎么操作吧 首先:在vue项目中缓存页面我们能想到 keep ...
- Redis基本操作(2)
一.list类型 列表的元素类型为string 按照插⼊顺序排序 增加.修改 例1:在左侧插⼊数据 lpush key value1 value2 ... 例2:在右侧插⼊数据 rpush key v ...
- [OpenCV实战]33 使用OpenCV进行Hough变换
目录 1 什么是霍夫变换 1.1 应用霍夫变换以检测图像中的线条 1.2 累加器 1.3 线条检测 1.4 圆环的检测 2 代码 3 参考 1 什么是霍夫变换 霍夫变换是用于检测图像中的简单形状(诸如 ...
- ubunut安装qtcreater
安装gcc 1 kxb@kxb:~$ gcc -v 2 3 Command 'gcc' not found, but can be installed with: 4 5 sudo apt insta ...
- CVE-2020-1957
漏洞名称 Apache Shiro 认证绕过漏洞 CVE-2020-1957 利用条件 Apache Shiro < 1.5.1 漏洞原理 Apache Shiro 是一款开源安全框架,提供身份 ...
- python之路50 ORM执行SQL语句 操作多表查询 双下线方法
ORM执行查询SQL语句 有时候ORM的操作效率可能偏低 我们是可以自己编写SQL的 方式1: models.User.objects.raw('select * from app01_user;') ...