又是废掉的一个div2啊

第一次在学校熬夜打cf,开心还看到了自己最喜欢的斜率优化ohhh

链接 :E - Long Way Home

看到那个平方就可以靠感觉认为是斜率优化了....

感觉似不似有点想法??k只有20...

可以试着去考虑最后一步用飞机,然后跑dijkstra求出走普通路径的。

其实就这样了...


考虑k=1的情况:

在最后坐飞机,前面都普通路径行走

则:\(d_{new}[i]=min(d_{old}[j]+(i-j)^2)\)

\(d_{new}\)为最后的答案,就是在最后坐飞机,\(d_{old}\)就是前面已经处理的走普通路径

然后跑一遍dijkstra,看看是否会更新(即假设存在A->C的最短路径为:A->B最后坐飞机,B->C走普通路径)


处理k>1的情况也是一样的,做k次dp,每一次在dp后跑最短路看能否用普通路径更新。

注意的是在一开始要跑一遍最短路,代表坐0次飞机的最短路径。

然后就是对于这个dp式子的处理了:

观察发现可以把式子转换为:\(d_{old}[j]+j^2=2ij+d_{new}[i]-i^2\)

斜率为\(2i\),X为\(j\),Y为\(d_{old}[j]+j^2\)。斜率和X都单调递增,所以可以画图发现决策点是下凸(为什么不转换式子要画图?因为j有特殊的点)

这个j特殊的点就在于没有范围的限制,也就是范围是(1<=j<=n)

所以就不可以在循环中加入单调队列

可以先一遍循环把所有决策点存入单调队列,然后再一遍循环更新答案

就完了....

对了!还有一个点:因为m可能小于n,图可能不连通,也就是说从只1号点跑dijkstra就不一定可以遍历完,所以就需要在dp时如果更新了\(d_{new}\)就要把它放入优先队列中,以保证每个点都可以更新到。

Over.

一定要在计算Y的时候把\(j^2\)开成long long啊!!!麻了,改了一个小时(ku)

总的复杂度\(O(k(mlogn+n))\)

代码:

#include<bits/stdc++.h>
#define ll long long
using namespace std;
inline int read(){
register int x = 0, t = 1;
register char ch=getchar();
while(ch<'0'||ch>'9'){
if(ch=='-')
t=-1;
ch=getchar();
}
while(ch>='0'&&ch<='9'){
x=(x<<1)+(x<<3)+(ch^48);
ch=getchar();
}
return x*t;
}
struct node{
int to,nxt,w;
}e[200010];
int head[100010],cnt,vis[100010];
void add(int u,int v,int w){
e[++cnt].to=v;
e[cnt].nxt=head[u];
e[cnt].w=w;
head[u]=cnt;
}
ll dist[100010],dis[110000]/*old*/;
struct h{
int id;
ll dis;
bool operator<(const h &other)const{
return dis>other.dis;
}
};
priority_queue<h>qu;
void dijkstra(){//更新以普通边结尾
memset(vis,0,sizeof(vis));
qu.push((h){1,0});
while(!qu.empty()){
int p=qu.top().id;
qu.pop();
if(vis[p])continue;
vis[p]=1;
for(int i=head[p];i;i=e[i].nxt){
int v=e[i].to;
if(dist[v]>dist[p]+e[i].w){
dist[v]=dist[p]+e[i].w;
qu.push((h){v,dist[v]});
}
}
}
}
int q[100010],hd,tl;
ll Y(int i){return dis[i]+(ll)i*i;/*爆了!!*/}
ll X(int i){return i;}
ll K(int i){return 2*i;}
double slope(int x,int y){//x>y
if(X(x)==X(y)){
if(Y(x)<Y(y))return -1e18;
else return 1e18;
}
return (double)(Y(x)-Y(y))/(X(x)-X(y));
}
int main(){
int n=read(),m=read(),k=read();
for(int i=1;i<=m;i++){
int x=read(),y=read(),w=read();
add(x,y,w),add(y,x,w);
}
for(int i=2;i<=n;i++)dist[i]=1e18;
dijkstra();
while(k--){
for(int i=1;i<=n;i++)dis[i]=dist[i];
hd=tl=0;
for(int i=1;i<=n;i++){
//下凸壳
while(hd+1<tl&&slope(i,q[tl-1])<=slope(q[tl-1],q[tl-2]))tl--;
q[tl++]=i;
}
for(int i=1;i<=n;i++){
while(hd+1<tl&&slope(q[hd+1],q[hd])<=K(i))hd++;
if(hd<tl){
int j=q[hd];
if(dist[i]>dis[j]+(ll)(j-i)*(j-i)){
dist[i]=dis[j]+(ll)(j-i)*(j-i);
qu.push((h){i,dist[i]});
}
}
}
dijkstra();
}
for(int i=1;i<=n;i++)printf("%lld ",dist[i]);
return 0;
}

Codeforces 1715E - Long Way Home的更多相关文章

  1. python爬虫学习(5) —— 扒一下codeforces题面

    上一次我们拿学校的URP做了个小小的demo.... 其实我们还可以把每个学生的证件照爬下来做成一个证件照校花校草评比 另外也可以写一个物理实验自动选课... 但是出于多种原因,,还是绕开这些敏感话题 ...

  2. 【Codeforces 738D】Sea Battle(贪心)

    http://codeforces.com/contest/738/problem/D Galya is playing one-dimensional Sea Battle on a 1 × n g ...

  3. 【Codeforces 738C】Road to Cinema

    http://codeforces.com/contest/738/problem/C Vasya is currently at a car rental service, and he wants ...

  4. 【Codeforces 738A】Interview with Oleg

    http://codeforces.com/contest/738/problem/A Polycarp has interviewed Oleg and has written the interv ...

  5. CodeForces - 662A Gambling Nim

    http://codeforces.com/problemset/problem/662/A 题目大意: 给定n(n <= 500000)张卡片,每张卡片的两个面都写有数字,每个面都有0.5的概 ...

  6. CodeForces - 274B Zero Tree

    http://codeforces.com/problemset/problem/274/B 题目大意: 给定你一颗树,每个点上有权值. 现在你每次取出这颗树的一颗子树(即点集和边集均是原图的子集的连 ...

  7. CodeForces - 261B Maxim and Restaurant

    http://codeforces.com/problemset/problem/261/B 题目大意:给定n个数a1-an(n<=50,ai<=50),随机打乱后,记Si=a1+a2+a ...

  8. CodeForces - 696B Puzzles

    http://codeforces.com/problemset/problem/696/B 题目大意: 这是一颗有n个点的树,你从根开始游走,每当你第一次到达一个点时,把这个点的权记为(你已经到过不 ...

  9. CodeForces - 148D Bag of mice

    http://codeforces.com/problemset/problem/148/D 题目大意: 原来袋子里有w只白鼠和b只黑鼠 龙和王妃轮流从袋子里抓老鼠.谁先抓到白色老鼠谁就赢. 王妃每次 ...

随机推荐

  1. npm run serve修改为npm run dev

    找到package.json文件,打开文件找到  "serve": "vue-cli-service serve"  这一行,把前面的 serve 修改 dev ...

  2. Redis - 为什么 Redis 是单线程的?

    Redis中work线程是单线程的.也就是对于业务数据的操作是单线程的. Redis中存在多线程操作 异步关闭文件 异步将缓冲区冲洗到磁盘文件中 异步删除键值对 Redis是基于内存的,所以cpu不是 ...

  3. 【SpringSecurity系列2】基于SpringSecurity实现前后端分离无状态Rest API的权限控制原理分析

    源码传送门: https://github.com/ningzuoxin/zxning-springsecurity-demos/tree/master/01-springsecurity-state ...

  4. Linux离线包管理器RPM

    Linux离线包管理器RPM RPM 是RedHat Package Manager(RedHat软件包管理工具). 1.rpm常用参数介绍 查看rpm是否安装 rpm -q rpm包名 [root@ ...

  5. mysql中max_connections与max_user_connections使用区别

    问题描述:把max_connections和max_user_connections参数进行分析测试,顾名思义,max_connections就是负责数据库全局的连接数,max_user_connec ...

  6. Museui 图标速览,再也不用担心网页打不开了

    更多内容请见原文,原文转载自:https://blog.csdn.net/weixin_44519496/article/details/119328173

  7. FICO 常用事务码

    1.SAP配置流程 1.定义,定义组织,概念,比如FI中定义公司代码,会计科目表,年度变式.SAP中有大量的定义过程. 2.分配,把会计科目表/公司/年度变式等参数分配到公司代码,逻辑组织,基本实现框 ...

  8. linux shell的配置文件执行顺序

    shell配置文件的作用:初始化环境变量.设置命令提示符.指定系统命令路径等 shell配置文件分类: (1)系统级别配置文件: /etc下,比如/etc/profile./etc/bashrc (2 ...

  9. 『现学现忘』Docker基础 — 41、将本地镜像推送到阿里云

    目录 1.准备工作 2.阿里云容器镜像仓库的使用 (1)创建命名空间 (2)创建容器镜像 (3)查看阿里云镜像仓库的信息 3.将本地Docker镜像推送到阿里云 (1)登陆阿里云 (2)给镜像生成版本 ...

  10. Min-max 容斥与 kth 容斥

    期望的线性性: \[E(x+y)=E(x)+E(y) \] 证明: \[E(x+y)=\sum_i \sum_j(i+j)*P(i=x,j=y) \] \[=\sum_i\sum_ji*P(i=x,j ...