LibTorch 自动微分
得益于反向传播算法,神经网络计算导数时非常方便,下面代码中演示如何使用LibTorch进行自动微分求导。
进行自动微分运算需要调用函数
torch::autograd::grad(
outputs, // 为某个可微函数的输出 y=f(x) 中的 y
inputs, // 为某个可微函数的输入 y=f(x) 中的 x
grad_outputs,// 雅克比矩阵(此处计算 f'(x),故设置为1,且与x形状相同 )
retain_graph,// 默认值与 create_graph 相同,这里设置为 true即可
create_graph,// 需要设置为 true 以计算高阶导数
allow_unused // 设置为 false 即可
)
在本文示例中,我们计算 \(y=x^2+x\) 在 \(x = 0.1, 0.3, 0.5\) 处的函数值、一阶导数和二阶导数值,根据我们学到的数学知识,很容易计算出下列数据
| \(x\) | 0.1 | 0.3 | 0.5 |
|---|---|---|---|
| \(y\) | 0.11 | 0.39 | 0.75 |
| \(y'\) | 1.20 | 1.60 | 2.00 |
| \(y''\) | 2.00 | 2.00 | 2.00 |
而在LibTorch中调用自动微分计算导数的代码如下所示
#include <iostream>
#include <torch/torch.h>
int main(int argc, char* atgv[])
{
std::cout.setf(std::ios::scientific);
std::cout.precision(7);
std::vector<float> vec{0.1, 0.3, 0.5};
torch::Tensor x = torch::from_blob(vec.data(), {3}, torch::kFloat).requires_grad_(true);
torch::Tensor y = x * x + x; // y= x^2 + x
auto weight = torch::ones_like(x);
std::cout << "x = ";
for (int i = 0; i < 3; ++i)
std::cout << x[i].item<float>() << " ";
std::cout << std::endl;
std::cout << "y = "; // 0.11 0.39 0.75
for (int i = 0; i < 3; ++i)
std::cout << y[i].item<float>() << " ";
std::cout << std::endl;
// 计算输出一阶导数(y' = 2x + 1)
auto dydx = torch::autograd::grad({y}, {x}, {weight}, true, true, false);
std::cout << "dydx = "; // 1.2 1.6 2.0
for (int i = 0; i < 3; ++i)
std::cout << dydx[0][i].item<float>() << " ";
std::cout << std::endl;
// 计算输出二阶导数(y''= 2)
auto d2ydx2 = torch::autograd::grad({dydx[0]}, {x}, {weight});
std::cout << "d2ydx2 = "; // 2.0 2.0 2.0
for (int i = 0; i < 3; ++i)
std::cout << d2ydx2[0][i].item<float>() << " ";
std::cout << std::endl;
return 0;
}
计算结果如下图所示,与我们手动计算的结果一致。

LibTorch 自动微分的更多相关文章
- 附录D——自动微分(Autodiff)
本文介绍了五种微分方式,最后两种才是自动微分. 前两种方法求出了原函数对应的导函数,后三种方法只是求出了某一点的导数. 假设原函数是$f(x,y) = x^2y + y +2$,需要求其偏导数$\fr ...
- pytorch学习-AUTOGRAD: AUTOMATIC DIFFERENTIATION自动微分
参考:https://pytorch.org/tutorials/beginner/blitz/autograd_tutorial.html#sphx-glr-beginner-blitz-autog ...
- 自动微分(AD)学习笔记
1.自动微分(AD) 作者:李济深链接:https://www.zhihu.com/question/48356514/answer/125175491来源:知乎著作权归作者所有.商业转载请联系作者获 ...
- <转>如何用C++实现自动微分
作者:李瞬生转摘链接:https://www.zhihu.com/question/48356514/answer/123290631来源:知乎著作权归作者所有. 实现 AD 有两种方式,函数重载与代 ...
- (转)自动微分(Automatic Differentiation)简介——tensorflow核心原理
现代深度学习系统中(比如MXNet, TensorFlow等)都用到了一种技术——自动微分.在此之前,机器学习社区中很少发挥这个利器,一般都是用Backpropagation进行梯度求解,然后进行SG ...
- PyTorch自动微分基本原理
序言:在训练一个神经网络时,梯度的计算是一个关键的步骤,它为神经网络的优化提供了关键数据.但是在面临复杂神经网络的时候导数的计算就成为一个难题,要求人们解出复杂.高维的方程是不现实的.这就是自动微分出 ...
- 【tensorflow2.0】自动微分机制
神经网络通常依赖反向传播求梯度来更新网络参数,求梯度过程通常是一件非常复杂而容易出错的事情. 而深度学习框架可以帮助我们自动地完成这种求梯度运算. Tensorflow一般使用梯度磁带tf.Gradi ...
- PyTorch 自动微分示例
PyTorch 自动微分示例 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后训练第一个神经网络.autograd 软件包为 Tensors 上的所有算子提供自动微分 ...
- PyTorch 自动微分
PyTorch 自动微分 autograd 包是 PyTorch 中所有神经网络的核心.首先简要地介绍,然后将会去训练的第一个神经网络.该 autograd 软件包为 Tensors 上的所有操作提供 ...
随机推荐
- Qt项目开发实例 (含源码)
源码传送门: 啊渊 / QT博客案例 · GitCode 目前QT的研发都是基于windows操作系统的,本文分享在国产操作系统中学QT的路线图,其实学习路线差不多,为了全面的回顾自己的学习知识,打算 ...
- Python递归函数的定义和几个小例子
递归函数 (1)什么是递归函数? 我们都知道,一个函数可以调用其他函数.如果这个函数在内部调用它自己,那么这个函数就叫递归函数. (2)递归函数的作用 举个例子,我们来计算阶乘 n! = 1 * 2 ...
- python写个前端,这不是轻轻松松~
前端除了用js++css+html,还有没有其它办法?其实python也可以 1. 安装与基本流程 Python学习交流Q群:660193417### 安装 PyWebIO 和其他的第三方库一样使用p ...
- Linux 安装Apche服务
用yum 进行在线安装apche服务 yum install -y httpd 我这边是centos7 需要开启一下端口: 1 firewall-cmd --zone=public --add-por ...
- Git的历史和安装Git及环境配置
Git历史同生活中的许多伟大事物一样,Git 诞生于一个极富纷争大举创新的年代. Linux 内核开源项目有着为数众广的参与者.绝大多数的 Linux 内核维护工作都花在了提交补丁和保存归档的繁琐事务 ...
- 02 MySQL_数据库相关的SQL
数据库相关的SQL 1. 查看所有数据库 show databases; 2. 创建数据库 格式:create database 数据库名称: 示例: create database db1; 3. ...
- Centos7安装最新docker
Centos7安装最新docker(root身份运行) 环境查看 CentOS 需要7版本以上,内核最好3.10以上 1.查看Linux版本:rpm -q centos-release 2.查看内核版 ...
- tokitsukaze and Soldier 来源:牛客网
题目 链接:https://ac.nowcoder.com/acm/contest/28886/1004 来源:牛客网 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 524288K, ...
- Random的概述和基本使用与生成指定范围的随机数
Random类用来生成随机数字,使用起来需要三个步骤 1.导包 import java.util.Random; 2.创建 Random random = new Random();//小括号中留空即 ...
- 关于Tornado5.1:到底是真实的异步和还是虚假的异步
原文转载自「刘悦的技术博客」https://v3u.cn/a_id_107 我们知道Tornado 优秀的大并发处理能力得益于它的 web server 从底层开始就自己实现了一整套基于 epoll ...