Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i-th activity, three non-negative numbers are given: S[i]E[i], and L[i], where S[i] is the index of the starting check point, E[i] of the ending check point, and L[i] the lasting time of the activity. The numbers in a line are separated by a space.

Output Specification:

For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".

Sample Input 1:

9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4

Sample Output 1:

18

Sample Input 2:

4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5

Sample Output 2:

Impossible
#include<stdio.h>
#include<queue>
using namespace std;
const int maxn = ; int map[maxn][maxn],d[maxn];
int inDegree[maxn]; void init(int n); int main()
{
int n,m;
scanf("%d%d",&n,&m); init(n); int u,v,w;
for (int i = ; i < m; i++)
{
scanf("%d%d%d",&u,&v,&w);
map[u][v] = w;
inDegree[v]++;
} queue<int> q; for (int i = ; i < n; i++)
{
if (!inDegree[i])
{
q.push(i);
d[i] = ;
}
} while (!q.empty())
{
int cur = q.front();
q.pop(); for (int i = ; i < n; i++)
{
if (map[cur][i] != -)
{
inDegree[i]--;
if (d[i] < d[cur] + map[cur][i])
{
d[i] = d[cur] + map[cur][i];
}
if (!inDegree[i])
{
q.push(i);
}
}
}
} int maxCost = -;
bool flag = true;
for (int i = ; i < n; i++)
{
if (inDegree[i])
{
flag = false;
break;
}
if (d[i] > maxCost)
{
maxCost = d[i];
}
} if (flag)
{
printf("%d",maxCost);
}
else
{
printf("Impossible");
} return ;
} void init(int n)
{
for (int i = ; i < n; i++)
{
d[i] = -;
inDegree[i] = ;
for (int j = ; j < n; j++)
{
map[i][j] = map[j][i] = -;
}
}
}
 

08-图8 How Long Does It Take (25 分)的更多相关文章

  1. PAT A1142 Maximal Clique (25 分)——图

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  2. 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)

    7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...

  3. PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)

    1013 Battle Over Cities (25 分)   It is vitally important to have all the cities connected by highway ...

  4. PAT A1134 Vertex Cover (25 分)——图遍历

    A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at le ...

  5. PAT A1021 Deepest Root (25 分)——图的BFS,DFS

    A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on th ...

  6. PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  7. L2-023 图着色问题 (25 分)vector

    图着色问题是一个著名的NP完全问题.给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色? 但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请 ...

  8. PAT A1122 Hamiltonian Cycle (25 分)——图遍历

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  9. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  10. 1013 Battle Over Cities (25 分)(图的遍历or并查集)

    这题用并查集或者dfs都可以做 dfs #include<bits/stdc++.h> using namespace std; ; bool mp[N][N]; int n,m,k; b ...

随机推荐

  1. asp获取access数据库中的一条随机记录

    针对“用一条SQL得到数据库中的随机记录集”问题在网上已经有很多答案了: SQL Server 2000: SELECT TOP n * FROM tanblename ORDER BY NEWID( ...

  2. Mysql之索引(六)

    1.思考 在图书馆是怎么找到一本书的? 一般的应用系统对比数据库的读写比例在10:1左右(即有10次查询有1次写操作),而且插入操作和更新操作很少出现性能问题. 遇到最多,最复杂的还是一些复杂的查询操 ...

  3. 安装和使用pyltp

    什么是pyltp: pyltp 是LTP的 Python 封装,提供了分词,词性标注,命名实体识别,依存句法分析,语义角色标注的功能. 安装 pyltp 测试环境:系统win10 64位, pytho ...

  4. Matlab代理模式

    代理模式(Proxy)就是给一个对象提供一个代理对象,并有代理对象来控制对原有对象的引用.代理模式和装饰模式非常类似,但最主要的区别是代理模式中,代理类对被代理的对象有控制权,决定其执行或者不执行.本 ...

  5. Vue.js---指令与事件、语法糖

    指令与事件 指令(Directives)是Vue.js模板中最常用的一项功能,它带有前缀v-,指令的职责就是当其表达式的值改变时,相应地将某些行为应用到DOM上. v-if: 显示这段文本 当数据sh ...

  6. ip协议栈

    struct iphdr { #if defined(__LITTLE_ENDIAN_BITFIELD) __u8 ihl:4, version:4; #elif defined (__BIG_END ...

  7. RabbitMQ基本概念(一)-RabbitMQ的优劣势及产生背景

    本篇并没有直接讲到技术,例如没有先写个Helloword.我想在选择了解或者学习一门技术之前先要明白为什么要现在这个技术而不是其他的,以免到最后发现自己学错了.同时如果已经确定就是他,最好先要了解下技 ...

  8. 如何预防SQL注入

    归纳一下,主要有以下几点: 1.永远不要信任用户的输入.对用户的输入进行校验,可以通过正则表达式,或限制长度:对单引号和 双"-"进行转换等. 2.永远不要使用动态拼装sql,可以 ...

  9. jQuery和使用oninput事件

  10. python的一些包安装

    Linux下pip 的安装方法: 使用get-pip.py安装 要安装pip,请安全下载get-pip.py.1: curl https://bootstrap.pypa.io/get-pip.py ...