Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.

Input Specification:

Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i-th activity, three non-negative numbers are given: S[i]E[i], and L[i], where S[i] is the index of the starting check point, E[i] of the ending check point, and L[i] the lasting time of the activity. The numbers in a line are separated by a space.

Output Specification:

For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".

Sample Input 1:

9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4

Sample Output 1:

18

Sample Input 2:

4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5

Sample Output 2:

Impossible
#include<stdio.h>
#include<queue>
using namespace std;
const int maxn = ; int map[maxn][maxn],d[maxn];
int inDegree[maxn]; void init(int n); int main()
{
int n,m;
scanf("%d%d",&n,&m); init(n); int u,v,w;
for (int i = ; i < m; i++)
{
scanf("%d%d%d",&u,&v,&w);
map[u][v] = w;
inDegree[v]++;
} queue<int> q; for (int i = ; i < n; i++)
{
if (!inDegree[i])
{
q.push(i);
d[i] = ;
}
} while (!q.empty())
{
int cur = q.front();
q.pop(); for (int i = ; i < n; i++)
{
if (map[cur][i] != -)
{
inDegree[i]--;
if (d[i] < d[cur] + map[cur][i])
{
d[i] = d[cur] + map[cur][i];
}
if (!inDegree[i])
{
q.push(i);
}
}
}
} int maxCost = -;
bool flag = true;
for (int i = ; i < n; i++)
{
if (inDegree[i])
{
flag = false;
break;
}
if (d[i] > maxCost)
{
maxCost = d[i];
}
} if (flag)
{
printf("%d",maxCost);
}
else
{
printf("Impossible");
} return ;
} void init(int n)
{
for (int i = ; i < n; i++)
{
d[i] = -;
inDegree[i] = ;
for (int j = ; j < n; j++)
{
map[i][j] = map[j][i] = -;
}
}
}
 

08-图8 How Long Does It Take (25 分)的更多相关文章

  1. PAT A1142 Maximal Clique (25 分)——图

    A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...

  2. 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)

    7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...

  3. PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)

    1013 Battle Over Cities (25 分)   It is vitally important to have all the cities connected by highway ...

  4. PAT A1134 Vertex Cover (25 分)——图遍历

    A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at le ...

  5. PAT A1021 Deepest Root (25 分)——图的BFS,DFS

    A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on th ...

  6. PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数

    It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...

  7. L2-023 图着色问题 (25 分)vector

    图着色问题是一个著名的NP完全问题.给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色? 但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请 ...

  8. PAT A1122 Hamiltonian Cycle (25 分)——图遍历

    The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...

  9. PAT A1150 Travelling Salesman Problem (25 分)——图的遍历

    The "travelling salesman problem" asks the following question: "Given a list of citie ...

  10. 1013 Battle Over Cities (25 分)(图的遍历or并查集)

    这题用并查集或者dfs都可以做 dfs #include<bits/stdc++.h> using namespace std; ; bool mp[N][N]; int n,m,k; b ...

随机推荐

  1. linuxmint安装Tools找不到Tools的压缩包问题

    安装Linuxmint之后按照惯例安装Tools,打开桌面上的Tools光盘之后找不到压缩包. PS:因为已经装好了,就不上图了,按照下面的步骤做就没有问题了. 1:找到vmware的安装目录下的li ...

  2. java List深拷贝示例

    示例一 import org.slf4j.Logger; import org.slf4j.LoggerFactory; import java.util.ArrayList; import java ...

  3. Django-xadmin的使用介绍

    Django-xadmin的介绍 Django是python的重量级web框架,写得少,做得多,非常适合后端开发,它很大的一个亮点是,自带后台管理模块,但它自带的后台管理有点丑,而Xadmin是基于b ...

  4. Django---Django的中间件

    Django---Django的中间件 一丶中间件介绍 什么是中间件 官方的说法:中间件是一个用来处理Django的请求和响应的框架级别的钩子.它是一个轻量.低级别的插件系统,用于在全局范围内改变Dj ...

  5. java 之 集合概述

    一.集合概述 不管是哪一种数据结构,其实本质上都是容器来着,就是用来装对象的.因此,我们就要搞清楚两点:(1)如何存储(2)存储特点 1.集合 集合是 Java 中提供的一种容器,可以用来存储多个数据 ...

  6. Linux系统MySQL的常用操作命令

    安装好MySQL服务后添加环境变量: #vi /etc/profile export MYSQL_HOME=/usr/local/mysql export PATH=$PATH:$MYSQL_HOME ...

  7. 数据结构与算法16—平衡二叉(AVL)树

    我们知道,对于一般的二叉搜索树(Binary Search Tree),其期望高度(即为一棵平衡树时)为log2n,其各操作的时间复杂度O(log2n)同时也由此而决定.但是,在某些极端的情况下(如在 ...

  8. k8s 初识pod (二)

    kubernetes中调用pod到哪个节点上是无关紧要的,但由于实际情况,每台node的硬件环境不一致,所以某些情况要求将不同pod调到指定节点上运行.也可以通过label实现. kubectl la ...

  9. Httpd服务入门知识-Httpd服务安装

    Httpd服务入门知识-Httpd服务安装 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.Httpd概述 1>.Httpd介绍 20世纪90年代初,国家超级计算机应用中心 ...

  10. Centos7永久修改IP地址(NAT模式)

    永久修改IP地址,即为设置静态的IP地址. 一.修改IP地址前需要准备的工作 1.虚拟机需要使用NAT的网络模式 虚拟机关机状态下,点击"编辑虚拟机设置",点击"网络适配 ...