08-图8 How Long Does It Take (25 分)
Given the relations of all the activities of a project, you are supposed to find the earliest completion time of the project.
Input Specification:
Each input file contains one test case. Each case starts with a line containing two positive integers N (≤100), the number of activity check points (hence it is assumed that the check points are numbered from 0 to N−1), and M, the number of activities. Then M lines follow, each gives the description of an activity. For the i
-th activity, three non-negative numbers are given: S[i]
, E[i]
, and L[i]
, where S[i]
is the index of the starting check point, E[i]
of the ending check point, and L[i]
the lasting time of the activity. The numbers in a line are separated by a space.
Output Specification:
For each test case, if the scheduling is possible, print in a line its earliest completion time; or simply output "Impossible".
Sample Input 1:
9 12
0 1 6
0 2 4
0 3 5
1 4 1
2 4 1
3 5 2
5 4 0
4 6 9
4 7 7
5 7 4
6 8 2
7 8 4
Sample Output 1:
18
Sample Input 2:
4 5
0 1 1
0 2 2
2 1 3
1 3 4
3 2 5
Sample Output 2:
Impossible
#include<stdio.h>
#include<queue>
using namespace std;
const int maxn = ; int map[maxn][maxn],d[maxn];
int inDegree[maxn]; void init(int n); int main()
{
int n,m;
scanf("%d%d",&n,&m); init(n); int u,v,w;
for (int i = ; i < m; i++)
{
scanf("%d%d%d",&u,&v,&w);
map[u][v] = w;
inDegree[v]++;
} queue<int> q; for (int i = ; i < n; i++)
{
if (!inDegree[i])
{
q.push(i);
d[i] = ;
}
} while (!q.empty())
{
int cur = q.front();
q.pop(); for (int i = ; i < n; i++)
{
if (map[cur][i] != -)
{
inDegree[i]--;
if (d[i] < d[cur] + map[cur][i])
{
d[i] = d[cur] + map[cur][i];
}
if (!inDegree[i])
{
q.push(i);
}
}
}
} int maxCost = -;
bool flag = true;
for (int i = ; i < n; i++)
{
if (inDegree[i])
{
flag = false;
break;
}
if (d[i] > maxCost)
{
maxCost = d[i];
}
} if (flag)
{
printf("%d",maxCost);
}
else
{
printf("Impossible");
} return ;
} void init(int n)
{
for (int i = ; i < n; i++)
{
d[i] = -;
inDegree[i] = ;
for (int j = ; j < n; j++)
{
map[i][j] = map[j][i] = -;
}
}
}
08-图8 How Long Does It Take (25 分)的更多相关文章
- PAT A1142 Maximal Clique (25 分)——图
A clique is a subset of vertices of an undirected graph such that every two distinct vertices in the ...
- 7-8 哈利·波特的考试(25 分)(图的最短路径Floyd算法)
7-8 哈利·波特的考试(25 分) 哈利·波特要考试了,他需要你的帮助.这门课学的是用魔咒将一种动物变成另一种动物的本事.例如将猫变成老鼠的魔咒是haha,将老鼠变成鱼的魔咒是hehe等等.反方向变 ...
- PAT 甲级 1013 Battle Over Cities (25 分)(图的遍历,统计强连通分量个数,bfs,一遍就ac啦)
1013 Battle Over Cities (25 分) It is vitally important to have all the cities connected by highway ...
- PAT A1134 Vertex Cover (25 分)——图遍历
A vertex cover of a graph is a set of vertices such that each edge of the graph is incident to at le ...
- PAT A1021 Deepest Root (25 分)——图的BFS,DFS
A graph which is connected and acyclic can be considered a tree. The hight of the tree depends on th ...
- PAT A1013 Battle Over Cities (25 分)——图遍历,联通块个数
It is vitally important to have all the cities connected by highways in a war. If a city is occupied ...
- L2-023 图着色问题 (25 分)vector
图着色问题是一个著名的NP完全问题.给定无向图,,问可否用K种颜色为V中的每一个顶点分配一种颜色,使得不会有两个相邻顶点具有同一种颜色? 但本题并不是要你解决这个着色问题,而是对给定的一种颜色分配,请 ...
- PAT A1122 Hamiltonian Cycle (25 分)——图遍历
The "Hamilton cycle problem" is to find a simple cycle that contains every vertex in a gra ...
- PAT A1150 Travelling Salesman Problem (25 分)——图的遍历
The "travelling salesman problem" asks the following question: "Given a list of citie ...
- 1013 Battle Over Cities (25 分)(图的遍历or并查集)
这题用并查集或者dfs都可以做 dfs #include<bits/stdc++.h> using namespace std; ; bool mp[N][N]; int n,m,k; b ...
随机推荐
- .Net Core 指定编码格式的问题
我们在读取txt文件时,如果文件格式不是utf8,则获取的中文会乱码,所以要么另存文件为utf8格式,要么使用和文件相同的编码来读取. 如果文件为utf8,则: //一种 StreamReader s ...
- Lombok简介、使用、工作原理、优缺点
1.Lombok简介官方介绍 Project Lombok is a java library that automatically plugs into your editor and build ...
- 关于springMVC中的路径问题
相对路径中,我们最后想要的到的是绝对路径,而绝对路径=参照路径+相对路径: 相对路径往往都知道,只需要区分参照路径即可:对于前台和后台,参照路径不太相同: 什么是前台,后台路径: 前台路径: 出现在 ...
- w3c网站案例
w3c网站 reset操作 body { background-color: #eee; } html, body, h1, h2, h3, h4, h5, h6, ul, p { margin: 0 ...
- java比较两个小数的大小
BigDecimal data1 = new BigDecimal("1");BigDecimal data2 = new BigDecimal("1.0"); ...
- OSPF 高级配置
这是一个综合的实验,包含了静态路由.默认路由.RIP.OSPF四种路由.通过配置,最终实现全网互通. 实验拓扑 如图所示连接,地址规划如下: 名称 接口 IP地址 R1 f0/0 192.168.10 ...
- Windows & Ubuntu 双系统完美卸载Ubuntu(不残留,无污染)
双系统卸载Ubuntu时,如若直接从Windows磁盘管理里格式化Ubuntu分区,由于Ubuntu的引导盘的原因,会导致电脑启动时出现问题,所以不建议这样的操作. 卸载Ubuntu前需要区分BIOS ...
- (三)Kubernetes 快速入门
Kubernetes的核心对象 API Server提供了RESTful风格的编程接口,其管理的资源是Kubernetes API中的端点,用于存储某种API对象的集合,例如,内置Pod资源是包含了所 ...
- jenkins发布PHP代码(三)
一.先检查是否安装Git plugin和Publish Over SSH插件 系统管理-->插件管理-->已安装插件-->搜索Git plugin和Publish Over SSH ...
- .NET Core中Quartz.NET的依赖注入
目录 介绍 项目概况 创建配置文件 使用构造函数注入 使用选项模式 结论 介绍 Quartz.NET是一个方便的库,允许您通过实现IJob接口来安排重复任务.然而,它的局限性在于,默认情况下,它仅支持 ...