Pytorch卷积神经网络识别手写数字集
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码
#首先导入包
import torch
from torch.autograd import Variable
import torch.nn as nn
import torchvision
import torch.utils.data as Data
#一、数据准备
#训练数据:用了torchvision.datasets.MNIST,root是文件路径,train为True(这是训练数据),transform是把图像数据转换为张量,download(如果本地已有该文件选择false,没有就选择true)
train_data = torchvision.datasets.MNIST(root='./mnist/',train=True,transform=torchvision.transforms.ToTensor(),download=False)
#训练数据:同上,train为False(这是测试数据)
test_data = torchvision.datasets.MNIST(root='./mnist/',train=False)
# "训练数据加载器":dataset为训练数据,shuflle为打乱数据的顺序,batch_size是让数据50个为一组
train_loader = Data.DataLoader(dataset=train_data,shuffle=True,batch_size=50)
test_data.test_data.size()
torch.Size([10000, 28, 28])
#测试数据 test_data下的test_data为测试数据,因为下面conv2d输入的为4维数据,所以此处用torch.unsqueeze升维
test_x = Variable(torch.unsqueeze(test_data.test_data,dim=1),volatile=True).type(torch.FloatTensor)
#测试数据目标值
test_y = test_data.test_labels
#二、实现模型
class CNN(nn.Module):
def __init__(self):
super(CNN,self).__init__()
#conv2d参数:输入1维,输出16维,5个卷积核(kernel),步长(stride)为1,padding是2(如果想要 con2d 出来的图片长宽没有变化, padding=(kernel_size-1)/2 当 stride=1)
self.conv1 = nn.Sequential(nn.Conv2d(1,16,5,1,2),nn.ReLU(),nn.MaxPool2d(2))
self.conv2 = nn.Sequential(nn.Conv2d(16,32,5,1,2),nn.ReLU(),nn.MaxPool2d(2))
#Linear参数:输入维数,输出分的种类数
self.out = nn.Linear(32*7*7,10)
def forward(self,x):
x1 = self.conv1(x)
x2 = self.conv2(x1)
#这里给x3降为2维可以让linear函数使用
x3 = x2.view(x2.size(0),-1)
out = self.out(x3)
return out
#自动调整参数,最优化模型
cnn = CNN()
optimizer = torch.optim.Adam(cnn.parameters(),lr = 0.02)
loss_func = nn.CrossEntropyLoss()
#三、训练模型
for step,(x,y) in enumerate(train_loader):
x = Variable(x)
y = Variable(y)
out = cnn(x)
loss = loss_func(out,y)
#以下为固定操作,为了训练每一条数据,不断调整参数
optimizer.zero_grad()
loss.backward()
optimizer.step()
#四、测试
predict = cnn(test_x[:10])
res = torch.max(predict,1)[1]
res #测试数据
tensor([7, 2, 1, 0, 4, 1, 4, 9, 9, 9])
test_y[:10] #真实数据
tensor([7, 2, 1, 0, 4, 1, 4, 9, 5, 9])
#在这里我们发现前十个数据分类准确率达到90
Pytorch卷积神经网络识别手写数字集的更多相关文章
- 如何用卷积神经网络CNN识别手写数字集?
前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP, ...
- Tensorflow搭建卷积神经网络识别手写英语字母
更新记录: 2018年2月5日 初始文章版本 近几天需要进行英语手写体识别,查阅了很多资料,但是大多数资料都是针对MNIST数据集的,并且主要识别手写数字.为了满足实际的英文手写识别需求,需要从训练集 ...
- PyTorch基础——使用卷积神经网络识别手写数字
一.介绍 实验内容 内容包括用 PyTorch 来实现一个卷积神经网络,从而实现手写数字识别任务. 除此之外,还对卷积神经网络的卷积核.特征图等进行了分析,引出了过滤器的概念,并简单示了卷积神经网络的 ...
- Python实现神经网络算法识别手写数字集
最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究 ...
- 使用TensorFlow的卷积神经网络识别手写数字(3)-识别篇
from PIL import Image import numpy as np import tensorflow as tf import time bShowAccuracy = True # ...
- 使用TensorFlow的卷积神经网络识别手写数字(2)-训练篇
import numpy as np import tensorflow as tf import matplotlib import matplotlib.pyplot as plt import ...
- 使用TensorFlow的卷积神经网络识别手写数字(1)-预处理篇
功能: 将文件夹下的20*20像素黑白图片,根据重心位置绘制到28*28图片上,然后保存.经过预处理的图片有利于数字的准确识别.参见MNIST对图片的要求. 此处可下载已处理好的图片: https:/ ...
- 李宏毅 Keras手写数字集识别(优化篇)
在之前的一章中我们讲到的keras手写数字集的识别中,所使用的loss function为‘mse’,即均方差.那我们如何才能知道所得出的结果是不是overfitting?我们通过运行结果中的trai ...
- TensorFlow卷积神经网络实现手写数字识别以及可视化
边学习边笔记 https://www.cnblogs.com/felixwang2/p/9190602.html # https://www.cnblogs.com/felixwang2/p/9190 ...
随机推荐
- azure跨域问题(访问azure存储账户数据,blob)
访问azure存储账户数据报错:405错误 解决方案 打开访问的存储账户--->CORS--->Blob服务 全部填写*就可以了,点击“保存”即可. iframe就可以展示blob中的pd ...
- 第一阶段:Java基础 1.JAVA开发介绍---6. Java基本数据类型
Java 的两大数据类型: 内置数据类型(基本数据类型) 引用数据类型 本数据类型: Java语言提供了八种基本类型.六种数字类型,一种字符类型,还有一种布尔型. byte,short,int,lon ...
- Matlab解释器模式
解释器模式(Interperter),给定一个语言,定义一个语言的文法,并且建立一个解释器来解释该语言中的句子,实际开发中EL表达式或者正则表达式的解释器就是采用这种设计模式.其模式结构如下图.本文使 ...
- mybatis关联映射多对多
项目开发中,多对多关系也是非常常见的关系 在数据库中创建表的脚本 table.sql CREATE TABLE tb_user( id INT PRIMARY KEY AUTO_INCREMENT, ...
- sql语句技巧
应用场景:当sql 语句中where后面的条件字段为空的时候,条件不存在 eg:根据传入的参数,从student表中查询数据,参数包含姓名(name 必有),年龄(age 不一定有),性别(gende ...
- Microsoft SQL Server数据库语法
目录 关于数据库的语法: 1.创建数据库 create database 数据库名on primary(主文件属性(name,filename,size等)) -用逗号隔开次要主要文件和次要文件( ...
- Android-----创建SQLite数据库
简单介绍一下Android系统内置轻便又功能强大的嵌入式数据库--SQLite. SQLite是D.Richard Hipp用C语言编写的开源嵌入式数据库引擎,它是一款轻型的数据库,是遵守ACID的关 ...
- Mac pro操作快捷键
1. 在Finder顶部显示文件/文件夹全路径 终端里输入:defaults write com.apple.finder _FXShowPosixPathInTitle -bool TRUE;kil ...
- Linux(CentOS7)下安装Mysql8数据库
一.Linux版本 二.先下载Linux下的Mysql包,打开Mysql官网 https://www.mysql.com/ 点击DOWNLOAD,进入 https://www.mysql.com/do ...
- Linux下设置Nginx开机自启
1.本地环境 [root@dev ~]#cat /etc/redhat-release CentOS Linux release 7.5.1804 (Core) 2.在/etc/init.d创建ngi ...