主要是使用随机森林将four列缺失的数据补齐。

# fit到RandomForestRegressor之中,n_estimators代表随机森林中的决策树数量
#n_jobs这个参数告诉引擎有多少处理器是它可以使用。 “-1”意味着没有限制,而“1”值意味着它只能使用一个处理器。import pandas as pd #数据分析,引入pandas包,用以数据分析

import pandas as pd #数据分析,引入pandas包,用以数据分析
from sklearn.ensemble import RandomForestRegressor #随机森林 data=[[2,3,4],[6,7,8],[9,10,11,12],[52,84,62],[53,95,41,1],[12,92,12,21],[63,12,41,15],[85,76,43,1],[15,123,45,91],[952,42,1,3]]
df=pd.DataFrame(data,columns=['one','two','three','four']) df2=df[['four','one','two','three']] print('****************************')
print(df2) known_data=df2[df2.four.notnull()].as_matrix()
unknown_data=df2[df2.four.isnull()].as_matrix() y=known_data[:,0]
X=known_data[:,1:] rfr = RandomForestRegressor(n_estimators=2000, n_jobs=-1) rfr.fit(X, y) predictedDatas = rfr.predict(unknown_data[:,1:])
print('****************************')
df2.loc[(df2.four.isnull()),'four']=predictedDatas
print(df2)
print('****************************')

结果:

Python数据挖掘之随机森林的更多相关文章

  1. Python 实现的随机森林

    随机森林是一个高度灵活的机器学习方法,拥有广泛的应用前景,从市场营销到医疗保健保险. 既可以用来做市场营销模拟的建模,统计客户来源,保留和流失.也可用来预测疾病的风险和病患者的易感性. 随机森林是一个 ...

  2. Python机器学习笔记——随机森林算法

    随机森林算法的理论知识 随机森林是一种有监督学习算法,是以决策树为基学习器的集成学习算法.随机森林非常简单,易于实现,计算开销也很小,但是它在分类和回归上表现出非常惊人的性能,因此,随机森林被誉为“代 ...

  3. 机器学习之路:python 集成分类器 随机森林分类RandomForestClassifier 梯度提升决策树分类GradientBoostingClassifier 预测泰坦尼克号幸存者

    python3 学习使用随机森林分类器 梯度提升决策树分类 的api,并将他们和单一决策树预测结果做出对比 附上我的git,欢迎大家来参考我其他分类器的代码: https://github.com/l ...

  4. 随机森林入门攻略(内含R、Python代码)

    随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获 ...

  5. 【Python数据挖掘】决策树、随机森林、Bootsing、

    决策树的定义 决策树(decision tree)是一个树结构(可以是二叉树或非二叉树).其每个非叶节点表示一个特征属性上的测试,每个分支代表这个特征属性在某个值域上的输出,而每个叶节点存放一个类别. ...

  6. 如何在Python中从零开始实现随机森林

    欢迎大家前往云+社区,获取更多腾讯海量技术实践干货哦~ 决策树可能会受到高度变异的影响,使得结果对所使用的特定测试数据而言变得脆弱. 根据您的测试数据样本构建多个模型(称为套袋)可以减少这种差异,但是 ...

  7. Python中随机森林的实现与解释

    使用像Scikit-Learn这样的库,现在很容易在Python中实现数百种机器学习算法.这很容易,我们通常不需要任何关于模型如何工作的潜在知识来使用它.虽然不需要了解所有细节,但了解机器学习模型是如 ...

  8. python实现随机森林、逻辑回归和朴素贝叶斯的新闻文本分类

    实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb ...

  9. H2O中的随机森林算法介绍及其项目实战(python实现)

    H2O中的随机森林算法介绍及其项目实战(python实现) 包的引入:from h2o.estimators.random_forest import H2ORandomForestEstimator ...

随机推荐

  1. JetBrains CLion 2019 for Mac(智能C和C++编辑器)中英文如何切换完整教程

    右键显示包内容,进入目录,contents/lib,删除resources_zh.jar,重启即可. 参考: https://blog.csdn.net/qq_45179462/article/det ...

  2. 深入理解JVM虚拟机10:JVM常用参数以及调优实践

    转自http://www.rowkey.me/blog/2016/11/02/java-profile/?hmsr=toutiao.io&utm_medium=toutiao.io&u ...

  3. 迭代硬阈值类算法总结||IHT/NIHT/CGIHT/HTP

    迭代硬阈值类(IHT)算法总结 斜风细雨作小寒,淡烟疏柳媚晴滩.入淮清洛渐漫漫. 雪沫乳花浮午盏,蓼茸蒿笋试春盘.人间有味是清欢. ---- 苏轼 更多精彩内容请关注微信公众号 "优化与算法 ...

  4. 一个java创建,删除,构建Jenkins等功能的JenkinsUtil工具类

    package com.vip.webpagetest.utils; import java.io.InputStream;import java.util.ArrayList;import java ...

  5. HttpLitener处理http请求和Websocket请求

    HttpLitener处理http请求和Websocket请求的案例具体步骤如下 1.新建控制台项目TestClientWebsocket 2.选择项目右键添加类HttpAndWebsocket,代码 ...

  6. SonarQube入门【转】

    一.SonarQube简介Sonar 是一个用于代码质量管理的开放平台.通过插件机制,Sonar可以集成不同的测试工具,代码分析工具, 以及持续集成工具. 比如pmd-cpd.checkstyle.f ...

  7. Apollo的基本使用及常见问题

    1. 创建项目 在创建项目页面中填写相关项目信息,最后点击提交即可创建项目. 注意:应用Id必须唯一并且与客户配置的app.id一致. 2. 发布 进入对应项目可通过文本(批量)或者表格模式添加配置, ...

  8. 给div添加disabled属性

    <div id="CompanyId" name="CompanyId" type="select" ></div> ...

  9. 使用layui框架的select获取选中的值

    在使用时需要注意:select标签的外层需要加上类名".layui-form" 接下来就是根据需求来改变下拉框的内容了,直接给select的option重新赋一次值,记得加上对应的 ...

  10. iptables 配置场景3

    iptables -I INPUT -i lo -j ACCEPT    #允许本地回环地址访问: iptables -I INPUT -m state --state ESTABLISHED,REL ...