使用bert进行情感分类
2018年google推出了bert模型,这个模型的性能要远超于以前所使用的模型,总的来说就是很牛。但是训练bert模型是异常昂贵的,对于一般人来说并不需要自己单独训练bert,只需要加载预训练模型,就可以完成相应的任务。下面我将以情感分类为例,介绍使用bert的方法。这里与我们之前调用API写代码有所区别,已经有大神将bert封装成.py文件,我们只需要简单修改一下,就可以直接调用这些.py文件了。
官方文档
具体实现
我这里使用的是pytorch版本。
前置需要
- 安装pytorch和tensorflow。
- 安装PyTorch pretrained bert。(pip install pytorch-pretrained-bert)
- 将pytorch-pretrained-BERT提供的文件,整个下载。
- 选择并且下载预训练模型。地址:请点击

注意这里的model是tensorflow版本的,需要进行相应的转换才能在pytorch中使用
无论是tf版还是pytorch版本,预训练模型都需要三个文件(或者功能类似的)
- 预训练模型文件,里面保存的是模型参数。
- config文件,用来加载预训练模型。
- vocabulary文件,用于后续分词。
模型转换
文档里提供了convert_tf_checkpoint_to_pytorch.py 这个脚本来进行模型转换。使用方法如下:
export BERT_BASE_DIR=/path/to/bert/uncased_L-12_H-768_A-12
pytorch_pretrained_bert convert_tf_checkpoint_to_pytorch \
$BERT_BASE_DIR/bert_model.ckpt \
$BERT_BASE_DIR/bert_config.json \
$BERT_BASE_DIR/pytorch_model.bin
修改源码
这里是需要实现情感分类。只需要用到run_classifier_dataset_utils.py和run_classifier.py这两个文件。run_classifier_dataset_utils.py是用来处理文本的输入,我们只需要添加一个类用来处理输入即可。
class MyProcessor(DataProcessor):
'''Processor for the sentiment classification data set'''
def get_train_examples(self, data_dir):
"""See base class."""
logger.info("LOOKING AT {}".format(os.path.join(data_dir, "train.tsv")))
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "train.tsv")), "train")
def get_dev_examples(self, data_dir):
"""See base class."""
return self._create_examples(
self._read_tsv(os.path.join(data_dir, "dev.tsv")), "dev")
def get_labels(self):
"""See base class."""
return ["-1", "1"]
def _create_examples(self, lines, set_type):
"""Creates examples for the training and dev sets."""
examples = []
for (i, line) in enumerate(lines):
if i == 0:
continue
guid = "%s-%s" % (set_type, i)
text_a = line[0]
label = line[1]
examples.append(
InputExample(guid=guid, text_a=text_a, text_b=None, label=label))
return examples
train.tsv和dev.tsv分别表示训练集和测试集。记得要在下面的代码加上之前定义的类。
def compute_metrics(task_name, preds, labels):
assert len(preds) == len(labels)
if task_name == "cola":
return {"mcc": matthews_corrcoef(labels, preds)}
elif task_name == "sst-2":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mrpc":
return acc_and_f1(preds, labels)
elif task_name == "sts-b":
return pearson_and_spearman(preds, labels)
elif task_name == "qqp":
return acc_and_f1(preds, labels)
elif task_name == "mnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "mnli-mm":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "qnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "rte":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "wnli":
return {"acc": simple_accuracy(preds, labels)}
elif task_name == "my":
return acc_and_f1(preds, labels)
else:
raise KeyError(task_name)
processors = {
"cola": ColaProcessor,
"mnli": MnliProcessor,
"mnli-mm": MnliMismatchedProcessor,
"mrpc": MrpcProcessor,
"sst-2": Sst2Processor,
"sts-b": StsbProcessor,
"qqp": QqpProcessor,
"qnli": QnliProcessor,
"rte": RteProcessor,
"wnli": WnliProcessor,
"my": MyProcessor
}
output_modes = {
"cola": "classification",
"mnli": "classification",
"mrpc": "classification",
"sst-2": "classification",
"sts-b": "regression",
"qqp": "classification",
"qnli": "classification",
"rte": "classification",
"wnli": "classification",
"my": "classification"
}
运行bert
编辑shell脚本:
#!/bin/bash
export TASK_NAME=my
python run_classifier.py \
--task_name $TASK_NAME \
--do_train \
--do_eval \
--do_lower_case \
--data_dir /home/garvey/Yuqinfenxi/ \
--bert_model /home/garvey/uncased_L-12_H-768_A-12 \
--max_seq_length 410 \
--train_batch_size 8 \
--learning_rate 2e-5 \
--num_train_epochs 3.0 \
--output_dir /home/garvey/bertmodel
运行即可。这里要注意max_seq_length和train_batch_size这两个参数,设置过大是很容易爆掉显存的,一般来说运行bert需要11G左右的显存。
备注
max_seq_length是指词的数量而不是指字符的数量。参考代码中的注释:
The maximum total input sequence length after WordPiece tokenization. Sequences longer than this will be truncated, and sequences shorter than this will be padded.
对于sequence的理解,网上很多博客都把这个翻译为句子,我个人认为是不准确的,序列是可以包含多个句子的,而不只是单独一个句子。
注意
Bert开源的代码中,只提供了train和dev数据,也就是训练集和验证集。对于评测论文标准数据集的时候,只需要把训练集和测试集送进去就可以得到结果,这一过程是没有调参的(没有验证集),都是使用默认参数。但是如果用Bert来打比赛,注意这个时候的测试集是没有标签的,这就需要在源码中加上一个处理test数据集的部分,并且通过验证集来选择参数。
补充
在大的预训练模型例如像bert-large在对小的训练集进行精细调整的时候,往往会导致性能退化:模型要么运行良好,要么根本不起作用,在我们用bert-large对一些小数据集进行微调,直接使用默认参数的话二分类的准确率只有0.5,也就是一点作用也没有,这个时候需要对学习率和迭代次数进行一个调整才会有一个正常的结果,这个问题暂时还没有得到解决。
使用bert进行情感分类的更多相关文章
- 使用BERT进行情感分类预测及代码实例
文章目录 0. BERT介绍 1. BERT配置 1.1. clone BERT 代码 1.2. 数据处理 1.2.1预训练模型 1.2.2数据集 训练集 测试集 开发集 2. 修改代码 2.1 加入 ...
- Bert实战---情感分类
1.情感分析语料预处理 使用酒店评论语料,正面评论和负面评论各5000条,用BERT参数这么大的模型, 训练会产生严重过拟合,,泛化能力差的情况, 这也是我们下面需要解决的问题; 2.sigmoid二 ...
- 基于Bert的文本情感分类
详细代码已上传到github: click me Abstract: Sentiment classification is the process of analyzing and reaso ...
- 关于情感分类(Sentiment Classification)的文献整理
最近对NLP中情感分类子方向的研究有些兴趣,在此整理下个人阅读的笔记(持续更新中): 1. Thumbs up? Sentiment classification using machine lear ...
- kaggle——Bag of Words Meets Bags of Popcorn(IMDB电影评论情感分类实践)
kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0 ...
- NLP文本情感分类传统模型+深度学习(demo)
文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交 ...
- kaggle之电影评论文本情感分类
电影文本情感分类 Github地址 Kaggle地址 这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯.逻辑回 ...
- PaddlePaddle︱开发文档中学习情感分类(CNN、LSTM、双向LSTM)、语义角色标注
PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产 ...
- [DeeplearningAI笔记]序列模型2.9情感分类
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9 Sentiment classification 情感分类 情感分类任务简单来说是看一段文本,然后分辨这个人是否喜欢 ...
随机推荐
- XAMPP + PhpStorm + Xdebug本地实验环境搭建
参考: 下载合适的XDebug 点击这里,选择合适xdebug XAMPP配置 php_xdebug-xxxx.dll 拷贝dll至 D:\XAMPP\php\ext php.ini 文末追加 [XD ...
- CSS制作华为mate8手机模型示例
CSS制作华为mate8手机模型效果图 1.HTML代码 <!DOCTYPE html> <html> <head> <meta charset=" ...
- 事务@Transactional
在service类前加上@Transactional,声明这个service所有方法需要事务管理.每一个业务方法开始时都会打开一个事务. Spring默认情况下会对运行期例外(RunTimeExcep ...
- 有意义的单词分割——经典dfs题目
680. 分割字符串 中文 English 给一个字符串,你可以选择在一个字符或两个相邻字符之后拆分字符串,使字符串由仅一个字符或两个字符组成,输出所有可能的结果 样例 样例1 输入: "1 ...
- POI不同浏览器导出名称处理
/** * * @Title: encodeFileName * @Description: 导出文件转换文件名称编码 * @param @param fileNames * @param @para ...
- iptables 规则学习
iptables 一共有 3 张表:mangle,nat,filter mangle 表主要处理 ttl,tos,mark 等信息(进) filter 顾名思义就是过滤器,用作防火墙(出) nat 主 ...
- Python开发应用-正则表达进行排序搜索
re模块提供了3个方法对输入的字符串进行确切的查询,match和search最多只会返回一个匹配条件的子串,可以理解为非贪婪模式,而findall会返回N个匹配条件的子串,可以理解为贪婪模式 re.m ...
- GoLand——配置goproxy.io代理
前言 由于众所周知的原因,也为了更好的下载go的包,所以找到了goproxy 配置 ctrl+alt+s->Go->Go Modules(vgo)->设置proxy为https:// ...
- Linux Shell 常用命令与目录分区的学习总结
很早就想根据自己的学习规律和遗忘规律,自己总结一下Linux/Unix系统的Shell命令,一来便于自己时常查询之用,二来也分享于各位博友 Linux shell是系统的用户界面,即命令行.它提供了用 ...
- LeetCode 685. Redundant Connection II
原题链接在这里:https://leetcode.com/problems/redundant-connection-ii/ 题目: In this problem, a rooted tree is ...