传送门

论文《最小割模型在信息学竞赛中的应用》原题

二进制不同位上互不影响,那么就按位跑网络流

每一位上,确定的点值为1的与S连一条容量为INF的有向边。为0的与T连一条容量为INF的有向边。

其他的按给定的无向图建边,容量为1。

统计答案是从源点能到达的点(流量未达到容量)即为该位上为1的点。

需要跑多少遍根据所有权值的最高位来确定。直接跑30次TLE了。

#include <bits/stdc++.h>
using namespace std; inline int read() {
int x = , f = ; char ch = getchar();
while (ch < '' || ch > '') { if (ch == '-') f = -; ch = getchar(); }
while (ch >= '' && ch <= '') { x = x * + ch - ; ch = getchar(); }
return x * f;
} const int INF = 0x3f3f3f3f;
const int N = 2e5 + ;
struct Edge { int v, next, f; } edge[N];
struct IN { int u, v; } in[N];
int head[N], cnt, level[N], iter[N], n, m;
int a[N], res[N];
bool vis[N];
vector<int> appear; inline void add(int u, int v, int f) {
edge[cnt].v = v; edge[cnt].f = f; edge[cnt].next = head[u]; head[u] = cnt++;
} bool bfs(int s, int t) {
for (int i = ; i <= t; i++) level[i] = -, iter[i] = head[i];
queue<int> que;
que.push(s);
level[s] = ;
while (!que.empty()) {
int u = que.front(); que.pop();
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v, f = edge[i].f;
if (level[v] < && f) {
que.push(v);
level[v] = level[u] + ;
}
}
}
return level[t] != -;
} int dfs(int u, int t, int f) {
if (u == t || !f) return f;
int flow = ;
for (int i = iter[u]; ~i; i = edge[i].next) {
iter[u] = i;
int v = edge[i].v;
if (level[v] == level[u] + && edge[i].f) {
int w = dfs(v, t, min(f, edge[i].f));
if (!w) continue;
flow += w; f -= w;
edge[i].f -= w; edge[i^].f += w;
if (f <= ) break;
}
}
return flow;
} int dinic(int s, int t) {
int ans = ;
while (bfs(s, t)) ans += dfs(s, t, INF);
return ans;
} void get_ans(int u, int bit) {
vis[u] = ;
res[u] += << bit;
for (int i = head[u]; ~i; i = edge[i].next) {
int v = edge[i].v;
if (!vis[v] && edge[i].f) {
get_ans(v, bit);
}
}
} void solve(int bit, int s, int t) {
for (int i = ; i <= t; i++) head[i] = -, vis[i] = false;
cnt = ;
for (int i = , sz = appear.size(); i < sz; i++) {
int x = appear[i];
if (( << bit) & a[x]) {
add(s, x, INF);
add(x, s, );
} else {
add(x, t, INF);
add(t, x, );
}
}
for (int i = ; i <= m; i++) { add(in[i].u, in[i].v, ); add(in[i].v, in[i].u, ); }
dinic(s, t);
get_ans(s, bit);
} inline void init() {
for (int i = ; i <= n; i++) {
res[i] = a[i] = ;
}
appear.clear();
} int main() {
int T = read();
while (T--) {
n = read(), m = read();
init();
int s = , t = n + ;
int mak = ;
for (int i = ; i <= m; i++) {
in[i].u = read(), in[i].v = read();
}
int k = read();
while (k--) {
int u = read();
a[u] = read();
appear.emplace_back(u);
}
for (int i = , sz = appear.size(); i < sz; i++) {
int u = appear[i];
int temp = a[u];
int bit = ;
while (temp) {
bit++;
temp >>= ;
}
mak = max(bit, mak);
}
for (int i = ; i <= mak; i++) {
solve(i, s, t);
}
for (int i = ; i <= n; i++) printf("%d\n", res[i]);
}
}

Optimal Marks SPOJ - OPTM(最小割)的更多相关文章

  1. Optimal Marks SPOJ - OPTM (按位枚举-最小割)

    题意:给一张无向图,每个点有其点权,边(i,j)的cost是\(val_i\ XOR \ val_j\).现在只给出K个点的权值,求如何安排其余的点,使总花费最小. 分析:题目保证权值不超过32位整型 ...

  2. BZOJ 2400: Spoj 839 Optimal Marks (按位最小割)

    题面 一个无向图,一些点有固定权值,另外的点权值由你来定. 边的值为两点的异或值,一个无向图的值定义为所有边的值之和. 求无向图的最小值 分析 每一位都互不干扰,按位处理. 用最小割算最小值 保留原图 ...

  3. Optimal Marks SPOJ - OPTM

    传送门 一个无向图,每个点有点权,某些点点权确定了,某些点由你来确定,边权为两个点的异或和,要使边权和最小. 这不是一道按位做最小割的大水题么 非常开心地打了,还非常开心地以为有spj,然后非常开心地 ...

  4. Luogu SP839 OPTM - Optimal Marks(按位最小割)

    这道题和 BZOJ 2400 是一道题,不多讲了 CODE #include <cstdio> #include <cstring> #include <vector&g ...

  5. 839. Optimal Marks - SPOJ

    You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range ...

  6. Optimal Marks SPOJ 839

    这题远超其他题非常靠近最小割的实际意义: 割边<=>付出代价<=>决定让两个点的值不相同,边权增加 最小割<=>点的值与s一个阵营的与s相同,与t一个阵营的与t相同 ...

  7. spoj 839 最小割+二进制

    #include<stdio.h> #include<string.h> #include<queue> using namespace std; #define ...

  8. SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)

    http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...

  9. spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】

    因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...

随机推荐

  1. JPA中JpaRepository的使用

    JAP中JpaRepository的使用方法 转载:https://www.cnblogs.com/amberbar/p/10261599.html转载:https://www.cnblogs.com ...

  2. day12——生成器、推导式、简单内置函数

    day12 生成器 迭代器:python中内置的一种节省空间的工具 生成器的本质就是一个迭代器 迭代器和生成器的区别:一个是pyhton自带的,一个是程序员自己写的 写一个生成器 基于函数 在函数中将 ...

  3. Java8 集合相关操作

    // java8 集合快速转成string List<String> cities; String citiesCommaSeparated = String.join(",&q ...

  4. lcd12864菜单

    最近一段时间学习了一下lcd12864屏幕的驱动(本人使用的是带字库的st7920驱动芯片). 1.该屏幕可以是串行驱动,或者并行驱动. 2.该屏幕的显示分为2部分,文字显示区DDRAM,图像显示区G ...

  5. 【Linux】Ubuntu替换阿里源

    --------------------------------------------------------- 参考文章:https://www.jianshu.com/p/97c35d569aa ...

  6. java之抽象类介绍

    什么抽象方法和抽象类 抽象方法 在类里面定义的没有方法体且用关键字“abstract”来修饰的方法就是抽象方法,所谓的没有方法体指的是在方法声明的时候没有大括号以及其中的内容,而是直接在声明时在方法名 ...

  7. 华为交换机配置Telnet步骤

    通过Telnet方式登录交换机进行设备查询管理为各网络管理员提供了便利,不需要成天拎着console线夹着笔记本蹲在机房里,只要在能连接到相应网络的电脑上Telnet连接即可. 前提条件是该交换机已经 ...

  8. Visual Studio 2019 安装

    目录 写在前面 官网下载 安装 等待安装 启动 写在前面 目前工作的开发环境还是旧版本的Visual Studio 2013版.个人感觉还是有点跟不上时代更新迭代的节奏了.毕竟,技术在进步.如果我们也 ...

  9. java之spring mvc之页面跳转

    1. 如果返回值为ModelAndView,在处理方法中,返回null时,默认跳转的视图名称为请求名.跳转结果会根据视图解析器来跳转. @RequestMapping("/hello.do& ...

  10. 2019 58同城java面试笔试题 (含面试题解析)

    本人3年开发经验.18年年底开始跑路找工作,在互联网寒冬下成功拿到阿里巴巴.今日头条.58同城等公司offer,岗位是Java后端开发,最终选择去了58同城. 面试了很多家公司,感觉大部分公司考察的点 ...