题意

默认\(n\leqslant m\)。

设\(f(i)\)表示\(i\)的约数和,因为是积性函数,可以用线性筛求。

先不考虑\(a\)的限制,我们推下式子:

\(\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}f(\gcd(i,j))\)

枚举\(\gcd(i,j)\)

\(\sum\limits_{d=1}^{n}f(d)\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}[\gcd(i,j)=d]\)

之后就莫反:

\(\sum\limits_{d=1}^{n}f(d)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}[\gcd(i,j)=1]\)

\(\sum\limits_{d=1}^{n}f(d)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}\sum\limits_{x|\gcd(i,j)}\mu(x)\)

\(\sum\limits_{d=1}^{n}f(d)\sum\limits_{x=1}^{\frac{n}{d}}\mu(x)\sum\limits_{i=1}^{\frac{n}{d}}\sum\limits_{j=1}^{\frac{m}{d}}[x|\gcd(i,j)]\)

\(\sum\limits_{d=1}^{n}f(d)\sum\limits_{x=1}^{\frac{n}{d}}\mu(x)*\frac{n}{d*x}*\frac{m}{d*x}\)

设\(T=d*x\):

\(\sum\limits_{T=1}^{n}\frac{n}{T}*\frac{m}{T}\sum\limits_{d|T}f(d)*\mu(\frac{T}{d})\)

除法分块加预处理\(\sum\limits_{d|T}f(d)*\mu(\frac{T}{d})\)即可。

对于\(a\)的限制,我们离线按\(a\)排序,同时用树状数组维护即可。

code:

#include<bits/stdc++.h>
using namespace std;
#define pli pair<ll,int>
#define mkp make_pair
#define fir first
#define sec second
typedef long long ll;
const int maxn=1e5+10;
const int maxq=2*1e4+10;
const ll mod=2147483648;
int Q;
int mu[maxn];
ll g[maxn],ans[maxq];
bool vis[maxn];
pli f[maxn];
vector<int>prime;
struct Query{int n,m,lim,id;}qr[maxq];
struct Tree_arry
{
#define lowbit(x) (x&-x)
ll a[maxn];
inline void add(int x,ll k){for(int i=x;i<=100000;i+=lowbit(i))a[i]=(a[i]+k)%mod;}
inline ll query(int x){ll res=0;for(int i=x;i;i-=lowbit(i))res=(res+a[i])%mod;return res;}
}tr;
inline bool cmp(Query x,Query y){return x.lim<y.lim;}
inline void pre_work(int n)
{
mu[1]=1;f[1]=mkp(1,1);vis[1]=1;
for(int i=2;i<=n;i++)
{
if(!vis[i])prime.push_back(i),mu[i]=-1,f[i]=mkp(i+1,i),g[i]=i+1;
for(unsigned int j=0;j<prime.size()&&i*prime[j]<=n;j++)
{
vis[i*prime[j]]=1;
if(i%prime[j]==0)
{
mu[i*prime[j]]=0;
g[i*prime[j]]=g[i]*prime[j]+1;
f[i*prime[j]]=mkp(f[i].fir/g[i]*g[i*prime[j]],i*prime[j]);
break;
}
mu[i*prime[j]]=-mu[i];
f[i*prime[j]]=mkp(f[i].fir*f[prime[j]].fir,i*prime[j]);
g[i*prime[j]]=prime[j]+1;
}
}
}
inline void work(int x)
{
for(int i=1;i*f[x].sec<=100000;i++)tr.add(i*f[x].sec,(f[x].fir*mu[i]%mod+mod)%mod);
}
inline ll calc(int n,int m)
{
ll res=0;
if(n>m)swap(n,m);
for(int l=1,r;l<=n;l=r+1)
{
r=min(n/(n/l),m/(m/l));
res=(res+((tr.query(r)-tr.query(l-1))%mod+mod)%mod*(n/l)%mod*(m/l)%mod)%mod;
}
return res;
}
int main()
{
pre_work(100000);
sort(f+1,f+100000+1);
scanf("%d",&Q);
for(int i=1;i<=Q;i++)scanf("%d%d%d",&qr[i].n,&qr[i].m,&qr[i].lim),qr[i].id=i;
sort(qr+1,qr+Q+1,cmp);
for(int i=1,j=1;i<=Q;i++)
{
while(f[j].fir<=qr[i].lim&&j<=100000)work(j),j++;
ans[qr[i].id]=calc(qr[i].n,qr[i].m);
}
for(int i=1;i<=Q;i++)printf("%lld\n",ans[i]);
return 0;
}

luoguP3312 [SDOI2014]数表的更多相关文章

  1. BZOJ 3529: [Sdoi2014]数表 [莫比乌斯反演 树状数组]

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 1399  Solved: 694[Submit][Status] ...

  2. 【BZOJ 3529】 [Sdoi2014]数表 (莫比乌斯+分块+离线+树状数组)

    3529: [Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和j的所有 ...

  3. BZOJ 3259 [Sdoi2014]数表 (莫比乌斯反演 + 树状数组)

    3529: [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2321  Solved: 1187[Submit][Status ...

  4. 洛咕3312 [SDOI2014]数表

    洛咕3312 [SDOI2014]数表 终于独立写出一道题了...真tm开心(还是先写完题解在写的) 先无视a的限制,设\(f[i]\)表示i的约数之和 不妨设\(n<m\) \(Ans=\su ...

  5. 【BZOJ3529】[Sdoi2014]数表 莫比乌斯反演+树状数组

    [BZOJ3529][Sdoi2014]数表 Description 有一张N×m的数表,其第i行第j列(1 < =i < =礼,1 < =j < =m)的数值为能同时整除i和 ...

  6. 洛谷 P3312 [SDOI2014]数表 解题报告

    P3312 [SDOI2014]数表 题目描述 有一张\(N*M\)的数表,其第\(i\)行第\(j\)列(\(1\le i \le n\),\(1 \le j \le m\))的数值为能同时整除\( ...

  7. BZOJ3529 [Sdoi2014]数表 【莫比乌斯反演】

    3529: [Sdoi2014]数表 Time Limit: 10 Sec Memory Limit: 512 MB Submit: 2151 Solved: 1080 [Submit][Status ...

  8. BZOJ[Sdoi2014]数表 莫比乌斯反演

    [Sdoi2014]数表 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 2383  Solved: 1229[Submit][Status][Disc ...

  9. 洛谷P3312 - [SDOI2014]数表

    Portal Solution 共\(T(T\leq2\times10^4)\)组测试数据.给出\(n,m(n,m\leq10^5),a(a\leq10^9)\),求\[ \sum_{i=1}^n\s ...

随机推荐

  1. ORB-SLAM2初步--局部地图构建

    一.局部地图构建简介 为什么叫“局部”地图构建,我的理解是这个线程的主要任务是像地图中插入关键帧(包括地图点等信息),以及需要进行LocalBA优化一个局部地图,这是相对于回环检测时进行的全局优化来说 ...

  2. Rabbitmq 实现延时任务

    1.需要用到插件 rabbitmq_delayed_message_exchange 来实现,插件下载地址:https://www.rabbitmq.com/community-plugins.htm ...

  3. spring-framework-core-ioc Container 笔记版本

    Spring框架对于java开发人员来说是无比重要的.接触java也有3年了,接触Spring两年了.在工作中天天使用它,平时也会通过视频和书籍尝试更加的了解Spring.对于初学者来说,Spring ...

  4. torch_11_风格迁移和cycleGAN

    1,A Neural Algorithm of atistic Style https://axiv.org/pdf/1508.06576.pdf 如何定义图片的内容,风格: 定义内容:在vggnet ...

  5. mysql 写计数器需要注意的问题

    MySql计数器,如网站点击数,如何实现高性能高并发的计数器功能 由于并发的时候 不能同时写入一行数据 所以要分开写<pre>先创建表CREATE TABLE `article_view` ...

  6. 漫谈微服务架构:什么是Spring Cloud,为何要选择Spring Cloud

        Spring Cloud是基于Spring Boot的,因此还在使用SpringMVC的同学要先了解Spring Boot.先上一段官话,Spring Cloud是一个基于Spring Boo ...

  7. Docker 下开发安装hyperf

    Docker 下开发hyperf # 下载并运行 hyperf/hyperf 镜像,并将镜像内的项目目录绑定到宿主机的 /tmp/skeleton 目录 docker run -v /tmp/skel ...

  8. hive on spark 释放session资源

    背景 启动hive时,可以看到2.0以后的版本,将要弃用mr引擎,官方建议使用spark,tez等引擎. spark同时支持批式流式处理,可以减少学习成本.所以选用了spark作为执行引擎. hive ...

  9. Java 函数式编程—@FunctionalInterface----functional interface

    单一函数接口,可以使用拉姆达表达式的形式具体化和实例化. 本质是将接口函数签名化. 如定义了一个函数式接口如下: @FunctionalInterface interface GreetingServ ...

  10. 【mybatis】mybatis传参的几种方式

    参考地址: https://my.oschina.net/liuzelin/blog/2966633