题目链接

先离散化,假设有\(P\)个点

定义矩阵\(A_{ij}\)表示\(i\)到\(j\)只经过一条边的最短路,$${(A^{a+b}){ij}=\min{1\le k\le p} { (Aa)_{ik}+(Ab)_{kj} }}$$

\(A^{a+b}_{ij}\)表示\(i\)到\(j\)经过\((a+b)\)条边的最短路。

这不就是\(ddp\)里常用的广义矩阵乘法吗,直接上快速幂即可。

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
int b[1010], n, m, s, t, cnt, A, B, C;
struct Matrix{
int a[220][220];
}M;
Matrix operator * (Matrix a, Matrix b){
Matrix c;
for(int i = 1; i <= cnt; ++i)
for(int j = 1; j <= cnt; ++j){
c.a[i][j] = 1 << 29;
for(int k = 1; k <= cnt; ++k)
c.a[i][j] = min(c.a[i][j], a.a[i][k] + b.a[k][j]);
}
return c;
}
int main(){
scanf("%d%d%d%d", &n, &m, &s, &t);
memset(M.a, 63, sizeof M.a);
for(int i = 1; i <= m; ++i){
scanf("%d%d%d", &C, &A, &B);
if(!b[A]) b[A] = ++cnt;
if(!b[B]) b[B] = ++cnt;
M.a[b[A]][b[B]] = M.a[b[B]][b[A]] = C;
}
Matrix now = M; --n;
while(n){
if(n & 1) now = now * M;
M = M * M; n >>= 1;
}
printf("%d\n", now.a[b[s]][b[t]]);
return 0;
}

【POJ3613 Cow Relays】(广义矩阵乘法)的更多相关文章

  1. [POJ3613] Cow Relays(Floyd+矩阵快速幂)

    解题报告 感觉这道题gyz大佬以前好像讲过一道差不多的?然鹅我这个蒟蒻发现矩阵快速幂已经全被我还给老师了...又恶补了一遍,真是恶臭啊. 题意 给定一个T(2 <= T <= 100)条边 ...

  2. POJ3613 Cow Relays(矩阵快速幂)

    题目大概要求从起点到终点恰好经过k条边的最短路. 离散数学告诉我们邻接矩阵的k次幂就能得出恰好经过k条路的信息,比如POJ2778. 这题也一样,矩阵的幂运算定义成min,而min满足结合律,所以可以 ...

  3. Codeforces 576D - Flights for Regular Customers(bitset 优化广义矩阵乘法)

    题面传送门 题意: 有一张 \(n\) 个点 \(m\) 条边的有向图,你初始在 \(1\) 号点,边上有边权 \(c_i\) 表示只有当你经过至少 \(c_i\) 条边的时候你才能经过第 \(i\) ...

  4. POJ3613 Cow Relays [矩阵乘法 floyd类似]

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 7335   Accepted: 2878 Descri ...

  5. 疯子的算法总结(九) 图论中的矩阵应用 Part 1+POJ3613 Cow Relays

    图的存储有邻接矩阵,那么他就具备一些矩阵的性质,设有一个图的demo[100][100];那么demo[M][N]就是M—>N的距离,若经过一次松弛操作demo[M][N]=demo[M][K] ...

  6. poj3613 Cow Relays【好题】【最短路】【快速幂】

    Cow Relays Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:9207   Accepted: 3604 Descrip ...

  7. poj 3613 Cow Relays【矩阵快速幂+Floyd】

    !:自环也算一条路径 矩阵快速幂,把矩阵乘法的部分替换成Floyd(只用一个点扩张),这样每"乘"一次,就是经过增加一条边的最短路,用矩阵快速幂优化,然后因为边数是100级别的,所 ...

  8. poj 3613 Cow Relays(矩阵的图论意义)

    题解 用一个矩阵来表示一个图的边的存在性,即矩阵C[i,j]=1表示有一条从i到j的有向边C[i,j]=0表示没有从i到j的边.这个矩阵的k次方后C[i,j]就表示有多少条从i到j恰好经过k条边的路径 ...

  9. POJ 3631 Cow Relays Floyd+矩阵快速幂

    题目描述 For their physical fitness program, N (2 ≤ N ≤ 1,000,000) cows have decided to run a relay race ...

随机推荐

  1. Nessus简单使用

    1.更新插件 上次搭建完后总觉得不踏实,因为老是提示插件多久没更新了,然后果断花了1.25美刀买了台vps,终于把最新的插件下载下来了,总共190M,需要的QQ私信我.

  2. D3.js的v5版本入门教程(第四章)—— 理解Update、Enter、Exit

    D3.js的v5版本入门教程(第四章) Update.Enter.Exit是D3.js中很重要的概念,下面来讲一下它们到底是什么?(当你看完后.你就会知道如果数据集个数和选择集个数不匹配的情况下使用d ...

  3. 【2019.11.20】SDN上机第4次作业

    安装OpenDayLight控制器 配置JAVA环境 https://www.opendaylight.org/ 在官网进行下载OpenDayLight控制器 启动OpenDayLight控制器和安装 ...

  4. Cloudera-Manager(一) —— 基本概念及使用

    概念 Cloudera Manager(简称CM)是Cloudera公司开发的一款大数据集群安装部署利器,这款利器具有集群自动化安装.中心化管理.集群监控.报警等功能,极大的提高集群管理的效率. AP ...

  5. 各种系统性能优化技术,采用vilocity实现商品页面静态化

    1.大型门户网站系统:>10万的访问量   行业网站(当当网,卓越网):20万-30万,一个小时内会跟数据库的交互至少20万-30万,会产生数据库瓶颈,每个数据库都有一个最大连接数(socket ...

  6. SQLSERVER教师学生成绩课程四表联合各种SQL考题

    --CREATE DATABASE EXAM_1 --GO USE EXAM_1 --判断并删除表 IF OBJECT_ID('Scores') IS NOT NULL DROP TABLE Scor ...

  7. PHP系列 | 编译安装msgpack-php

    Msgpack 是一个 PECL 扩展,此扩展提供用于与 MessagePack 序列化通信的 API. MessagePack 是一个基于二进制高效的对象序列化类库,可用于跨语言通信.它可以像JSO ...

  8. https://www.cnblogs.com/LBSer/p/3310455.html

    https://www.cnblogs.com/LBSer/p/3310455.html

  9. jsp页面获取后台传过来的list集合的长度

    在jsp页面导入函数标签库: <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core"% ...

  10. IDEA 加载maven工程时

    IDEA首次加载maven文件时,会无法编译,需要更新maven版本才行. 此处选择“add as maven project”. 然后点击maven对话框中的同步按钮,若仍无法更新,需要删除原有配置 ...