[LOJ#3119][Luogu5400][CTS2019]随机立方体(容斥+DP)
https://www.cnblogs.com/cjyyb/p/10900993.html
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const int N=,mod=;
int n,m,l,d,V,M,k,T,ans,v[N],w[N],s[N],is[N],fac[N],inv[N]; int C(int n,int m){ return n<m ? : 1ll*fac[n]*inv[m]%mod*inv[n-m]%mod; } int ksm(int a,int b){
int res=;
for (; b; a=1ll*a*a%mod,b>>=)
if (b & ) res=1ll*res*a%mod;
return res;
} void init(int n){
fac[]=; rep(i,,n) fac[i]=1ll*fac[i-]*i%mod;
inv[n]=ksm(fac[n],mod-); for (int i=n; i; i--) inv[i-]=1ll*inv[i]*i%mod;
} int main(){
freopen("cube.in","r",stdin);
freopen("cube.out","w",stdout);
init(N-);
for (scanf("%d",&T); T--; ){
scanf("%d%d%d%d",&n,&m,&l,&k); V=1ll*n*m%mod*l%mod; M=min(min(n,m),l); ans=; d=;
rep(i,,M) v[i]=(V-1ll*(n-i)*(m-i)%mod*(l-i)%mod+mod)%mod;
rep(i,,M) w[i]=1ll*C(n,i)*C(m,i)%mod*C(l,i)%mod*fac[i]%mod*fac[i]%mod*fac[i]%mod;
s[]=; rep(i,,M) s[i]=1ll*s[i-]*v[i]%mod;
is[M]=ksm(s[M],mod-); for (int i=M; i; i--) is[i-]=1ll*is[i]*v[i]%mod;
rep(i,k,M) ans=(ans+1ll*d*C(i,k)%mod*w[i]%mod*is[i])%mod,d=mod-d;
printf("%d\n",ans);
}
return ;
}
[LOJ#3119][Luogu5400][CTS2019]随机立方体(容斥+DP)的更多相关文章
- Luogu5400 CTS2019随机立方体(容斥原理)
考虑容斥,计算至少有k个极大数的概率.不妨设这k个数对应的格子依次为(k,k,k)……(1,1,1).那么某一维坐标<=k的格子会对这些格子是否会成为极大数产生影响.先将这样的所有格子和一个数集 ...
- HDU 5794 A Simple Chess (容斥+DP+Lucas)
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board ...
- [CF1086E]Beautiful Matrix(容斥+DP+树状数组)
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题 ...
- 【BZOJ3622】已经没有什么好害怕的了 容斥+DP
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output ...
- $bzoj2560$ 串珠子 容斥+$dp$
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多 ...
- LOJ3119 CTS2019 随机立方体 概率、容斥、二项式反演
传送门 为了方便我们设\(N\)是\(N,M,L\)中的最小值,某一个位置\((x,y,z)\)所控制的位置为集合\(\{(a,b,c) \mid a = x \text{或} b = y \text ...
- [LOJ#3119][Luogu5405][CTS2019]氪金手游(DP+容斥)
先考虑外向树的做法,显然一个点在其子树内第一个出现的概率等于它的权值除以它子树的权值和.于是f[i][j]表示i的子树的权值和为j时,i子树内所有数的相互顺序都满足条件的概率,转移直接做一个背包卷积即 ...
- [CTS2019]随机立方体(容斥+组合数学)
这题七次方做法显然,但由于我太菜了,想了一会发现也就只会这么多,而且别的毫无头绪.发现直接做不行,那么,容斥! f[i]为至少i个极值的方案,然后这里需要一些辅助变量,a[i]表示选出i个三维坐标均不 ...
- 题解-CTS2019随机立方体
problem \(\mathtt {loj-3119}\) 题意概要:一个 \(n\times m\times l\) 的立方体,立方体中每个格子上都有一个数,如果某个格子上的数比三维坐标中至少有一 ...
随机推荐
- 我的Android前生今世之缘-学习经验-安卓入门教程(六)
关注我,每天都有优质技术文章推送,工作,学习累了的时候放松一下自己. 本篇文章同步微信公众号 欢迎大家关注我的微信公众号:「醉翁猫咪」 据我所知,网上教学资料一堆一堆的,那么还有很多人说,如何学习? ...
- mysql 自联结
mysql> select * from test; +----+------------+-------+-----------+ | id | name | score | subject ...
- mysql sin() 函数
mysql> ); +---------------------+ | sin(PI()/) | +---------------------+ | 0.49999999999999994 | ...
- win10照片查看器不能看jpg等格式图片
1.首先,我们需要使用注册表编辑器来开启Win10系统照片查看器功能,因为其实这个功能是被隐藏了,那么按下Windows徽标键+R键,打开运行命令窗口,输入“regedit”命令. 2.打开注册表编辑 ...
- 懵了!简单的HTTP调用,时延竟如此大?
最近项目测试遇到个奇怪的现象,在测试环境通过 Apache HTTP Client 调用后端的 HTTP 服务,平均耗时居然接近 39.2ms. 图片来自 Pexels 可能乍一看觉得这不是很正常吗, ...
- process.env.NODE_ENV理解
1.理解NODE_ENV 在node中,有全局变量process表示的是当前的node进程.process.env包含着关于系统环境的信息.但是process.env中并不存在NODE_ENV这个东西 ...
- JSP的工作原理
jsp的本质就是一个servlet,jsp在第一次被访问时会被Web容器翻译成servlet index.jsp -> index_jsp.java -> 编译成index_jsp.cla ...
- Python3 fake_useragent 模块的使用和报错解决方案
在使用 Python 做爬虫的时候,我们需要伪装头部信息骗过网站的防爬策略,Python 中的第三方模块 fake_useragent 就很好的解决了这个问题,它将给我们返回一个随机封装了好的头部信息 ...
- windows环境下安装nginx
(1)下载 官网:http://nginx.org/en/docs/windows.html 下载:http://nginx.org/en/docs/windows.html 点击:nginx/Win ...
- Weblogic部署web项目获取项目根目录为null
写在前面 图片上传功能, web项目部署在本地Tomcat上并没有问题, 但是打成war包部署到Linux服务器Weblogic下却出现如题问题, 导致图片上传失败. 问题代码 String real ...