关于matplotlib学习还是强烈建议常去官方http://matplotlib.org/contents.html里查一查各种用法和toturial等。 
下面是jupyter notebook代码导出的md文件。

Plotting and Visualization

from __future__ import division
from numpy.random import randn
import numpy as np
import os
import matplotlib.pyplot as plt
np.random.seed(12345)
plt.rc('figure', figsize=(10, 6))
from pandas import Series, DataFrame
import pandas as pd
np.set_printoptions(precision=4)
%matplotlib inline
  • 1

matplotlib API 介绍

import matplotlib.pyplot as plt
  • 1

Figures and Subplots

fig = plt.figure()
  • 1
ax1 = fig.add_subplot(2, 2, 1)
  • 1
ax2 = fig.add_subplot(2, 2, 2)
ax3 = fig.add_subplot(2, 2, 3)
from numpy.random import randn
plt.plot(randn(50).cumsum(), 'k--')
[<matplotlib.lines.Line2D at 0x28e7668cb38>]

_ = ax1.hist(randn(100), bins=20, color='k', alpha=0.3)
ax2.scatter(np.arange(30), np.arange(30) + 3 * randn(30))
plt.close('all')
  • 1
fig, axes = plt.subplots(2, 3)
axes
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76BAFF98>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76C047F0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76C4CB00>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76C89D30>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76CD7940>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E76D0FFD0>]], dtype=object)

## 调整subplot间距

plt.subplots_adjust(left=None, bottom=None, right=None, top=None,
wspace=None, hspace=None)
fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
for j in range(2):
axes[i, j].hist(randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)

fig, axes = plt.subplots(2, 2, sharex=True, sharey=True)
for i in range(2):
for j in range(2):
axes[i, j].hist(randn(500), bins=50, color='k', alpha=0.5)
plt.subplots_adjust(wspace=0, hspace=0)

### 线条格式

plt.figure()
  • 1
plt.plot(randn(30).cumsum(), 'ko--')
  • 1
[<matplotlib.lines.Line2D at 0x28e7866a390>]
  • 1
  • 2

plt.close('all')
  • 1
data = randn(30).cumsum()
plt.plot(data, 'k--', label='Default')
plt.plot(data, 'k-', drawstyle='steps-post', label='steps')
plt.legend(loc='best')
<matplotlib.legend.Legend at 0x28e781103c8>

### Ticks, labels, and legends #### Setting the title, axis labels, ticks, and ticklabels

fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)
ax.plot(randn(1000).cumsum()) ticks = ax.set_xticks([0, 250, 500, 750, 1000])
labels = ax.set_xticklabels(['one', 'two', 'three', 'four', 'five'],
rotation=30, fontsize='small')
ax.set_title('some random lines')
ax.set_xlabel('Stages')
<matplotlib.text.Text at 0x28e782525c0>
  • 1
  • 2

#### Adding legends

fig = plt.figure(); ax = fig.add_subplot(1, 1, 1)
ax.plot(randn(1000).cumsum(), 'k', label='one')
ax.plot(randn(1000).cumsum(), 'k--', label='two')
ax.plot(randn(1000).cumsum(), 'k.', label='three') ax.legend(loc='best')
<matplotlib.legend.Legend at 0x28e7801e668>
  • 1
  • 2

### subplot 做标记

from datetime import datetime

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1) data = pd.read_csv('julyedu/spx.csv', index_col=0, parse_dates=True)
spx = data['SPX'] spx.plot(ax=ax, style='k-') crisis_data = [
(datetime(2007, 10, 11), 'Peak of bull market'),
(datetime(2008, 3, 12), 'Bear Stearns Fails'),
(datetime(2008, 9, 15), 'Lehman Bankruptcy')
] for date, label in crisis_data:
ax.annotate(label, xy=(date, spx.asof(date) + 50),
xytext=(date, spx.asof(date) + 200),
arrowprops=dict(facecolor='black'),
horizontalalignment='left', verticalalignment='top') # Zoom in on 2007-2010
ax.set_xlim(['1/1/2007', '1/1/2011'])
ax.set_ylim([600, 1800]) ax.set_title('Important dates in 2008-2009 financial crisis')
<matplotlib.text.Text at 0x28e77fb7358>

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1) rect = plt.Rectangle((0.2, 0.75), 0.4, 0.15, color='k', alpha=0.3)
circ = plt.Circle((0.7, 0.2), 0.15, color='b', alpha=0.3)
pgon = plt.Polygon([[0.15, 0.15], [0.35, 0.4], [0.2, 0.6]],
color='g', alpha=0.5) ax.add_patch(rect)
ax.add_patch(circ)
ax.add_patch(pgon)
<matplotlib.patches.Polygon at 0x28e77ed76a0>
  • 1
  • 2

### Saving plots to file

fig
  • 1

fig.savefig('figpath.svg')
  • 1
fig.savefig('figpath.png', dpi=400, bbox_inches='tight')
  • 1
from io import BytesIO
buffer = BytesIO()
plt.savefig(buffer)
plot_data = buffer.getvalue()

### matplotlib configuration

plt.rc('figure', figsize=(10, 10))
  • 1

## Plotting functions in pandas ### Line plots

plt.close('all')
  • 1
s = Series(np.random.randn(10).cumsum(), index=np.arange(0, 100, 10))
s.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x28e781c0208>

df = DataFrame(np.random.randn(10, 4).cumsum(0),
columns=['A', 'B', 'C', 'D'],
index=np.arange(0, 100, 10))
df.plot()
<matplotlib.axes._subplots.AxesSubplot at 0x28e7809d358>

### Bar plots

fig, axes = plt.subplots(2, 1)
data = Series(np.random.rand(16), index=list('abcdefghijklmnop'))
data.plot(kind='bar', ax=axes[0], color='k', alpha=0.7)
data.plot(kind='barh', ax=axes[1], color='k', alpha=0.7)
<matplotlib.axes._subplots.AxesSubplot at 0x11fd02b50>

df = DataFrame(np.random.rand(6, 4),
index=['one', 'two', 'three', 'four', 'five', 'six'],
columns=pd.Index(['A', 'B', 'C', 'D'], name='Genus'))
df
df.plot(kind='bar')
<matplotlib.axes._subplots.AxesSubplot at 0x28e77f482e8>
  • 1
  • 2

plt.figure()
  • 1
df.plot(kind='barh', stacked=True, alpha=0.5)
  • 1
<matplotlib.axes._subplots.AxesSubplot at 0x28e77e05be0>

png

tips = pd.read_csv('julyedu/tips.csv')
party_counts = pd.crosstab(tips.day, tips.size)
print(party_counts)
# Not many 1- and 6-person parties
party_counts = party_counts.ix[:, 2:5]
print(party_counts)

col_0 1708 day Fri 19 Sat 87 Sun 76 Thur 62 Empty DataFrame Columns: [] Index: [Fri, Sat, Sun, Thur] ### Histograms and density plots

plt.figure()
  • 1
tips['tip_pct'] = tips['tip'] / tips['total_bill']
print(tips.head())
tips['tip_pct'].hist(bins=50)
   total_bill   tip     sex smoker  day    time  size   tip_pct
0 16.99 1.01 Female No Sun Dinner 2 0.059447
1 10.34 1.66 Male No Sun Dinner 3 0.160542
2 21.01 3.50 Male No Sun Dinner 3 0.166587
3 23.68 3.31 Male No Sun Dinner 2 0.139780
4 24.59 3.61 Female No Sun Dinner 4 0.146808 <matplotlib.axes._subplots.AxesSubplot at 0x28e7997b390>

png

plt.figure()
  • 1
tips['tip_pct'].plot(kind='kde')
  • 1
plt.figure()
  • 1
comp1 = np.random.normal(0, 1, size=200)  # N(0, 1)
comp2 = np.random.normal(10, 2, size=200) # N(10, 4)
values = Series(np.concatenate([comp1, comp2]))
values.hist(bins=100, alpha=0.3, color='k', normed=True)
values.plot(kind='kde', style='k--')
<matplotlib.axes._subplots.AxesSubplot at 0x28e79b24358>
  • 1
  • 2

### Scatter plots

macro = pd.read_csv('julyedu/macrodata.csv')
data = macro[['cpi', 'm1', 'tbilrate', 'unemp']]
trans_data = np.log(data).diff().dropna()
trans_data[-5:]
  cpi m1 tbilrate unemp
198 -0.007904 0.045361 -0.396881 0.105361
199 -0.021979 0.066753 -2.277267 0.139762
200 0.002340 0.010286 0.606136 0.160343
201 0.008419 0.037461 -0.200671 0.127339
202 0.008894 0.012202 -0.405465 0.042560
plt.figure()
  • 1
plt.scatter(trans_data['m1'], trans_data['unemp'])
plt.title('Changes in log %s vs. log %s' % ('m1', 'unemp'))
  • 1
  • 2
<matplotlib.text.Text at 0x28e7bfebcc0>
  • 1
  • 2

pd.scatter_matrix(trans_data, diagonal='kde', alpha=0.3)
  • 1
array([[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7CA07EF0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C6E9128>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7DFEEBA8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C3DB3C8>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C9E5EB8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C9D0E10>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7BFE87B8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C732FD0>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C9704E0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7CF63320>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C8BB748>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C820978>],
[<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C6BBB00>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C3405F8>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7C874DA0>,
<matplotlib.axes._subplots.AxesSubplot object at 0x0000028E7E036550>]], dtype=object)

## Plotting Maps: Visualizing Haiti Earthquake Crisis data

data = pd.read_csv('julyedu/Haiti.csv')
data.info()
  • 1
  • 2
data[['INCIDENT DATE', 'LATITUDE', 'LONGITUDE']][:10]
  • 1
  INCIDENT DATE LATITUDE LONGITUDE
0 05/07/2010 17:26 18.233333 -72.533333
1 28/06/2010 23:06 50.226029 5.729886
2 24/06/2010 16:21 22.278381 114.174287
3 20/06/2010 21:59 44.407062 8.933989
4 18/05/2010 16:26 18.571084 -72.334671
5 26/04/2010 13:14 18.593707 -72.310079
6 26/04/2010 14:19 18.482800 -73.638800
7 26/04/2010 14:27 18.415000 -73.195000
8 15/03/2010 10:58 18.517443 -72.236841
9 15/03/2010 11:00 18.547790 -72.410010
data['CATEGORY'][:6]
  • 1

0 1. Urgences | Emergency, 3. Public Health, 1 1. Urgences | Emergency, 2. Urgences logistiqu… 2 2. Urgences logistiques | Vital Lines, 8. Autr… 3 1. Urgences | Emergency, 4 1. Urgences | Emergency, 5 5e. Communication lines down, Name: CATEGORY, dtype: object

data.describe()
  • 1
  Serial LATITUDE LONGITUDE
count 3593.000000 3593.000000 3593.000000
mean 2080.277484 18.611495 -72.322680
std 1171.100360 0.738572 3.650776
min 4.000000 18.041313 -74.452757
25% 1074.000000 18.524070 -72.417500
50% 2163.000000 18.539269 -72.335000
75% 3088.000000 18.561820 -72.293570
max 4052.000000 50.226029 114.174287
data = data[(data.LATITUDE > 18) & (data.LATITUDE < 20) &
(data.LONGITUDE > -75) & (data.LONGITUDE < -70)
& data.CATEGORY.notnull()]
def to_cat_list(catstr):
stripped = (x.strip() for x in catstr.split(','))
return [x for x in stripped if x] def get_all_categories(cat_series):
cat_sets = (set(to_cat_list(x)) for x in cat_series)
return sorted(set.union(*cat_sets)) def get_english(cat):
code, names = cat.split('.')
if '|' in names:
names = names.split(' | ')[1]
return code, names.strip()
get_english('2. Urgences logistiques | Vital Lines')
  • 1
('2', 'Vital Lines')
all_cats = get_all_categories(data.CATEGORY)
# Generator expression
english_mapping = dict(get_english(x) for x in all_cats)
english_mapping['2a']
english_mapping['6c']
'Earthquake and aftershocks'
def get_code(seq):
return [x.split('.')[0] for x in seq if x] all_codes = get_code(all_cats)
code_index = pd.Index(np.unique(all_codes))
dummy_frame = DataFrame(np.zeros((len(data), len(code_index))),
index=data.index, columns=code_index)
dummy_frame.ix[:, :6].info()
  • 1
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3569 entries, 0 to 3592
Data columns (total 6 columns):
1 3569 non-null float64
1a 3569 non-null float64
1b 3569 non-null float64
1c 3569 non-null float64
1d 3569 non-null float64
2 3569 non-null float64
dtypes: float64(6)
memory usage: 195.2 KB
for row, cat in zip(data.index, data.CATEGORY):
codes = get_code(to_cat_list(cat))
dummy_frame.ix[row, codes] = 1 data = data.join(dummy_frame.add_prefix('category_'))
data.ix[:, 10:15].info()
  • 1
<class 'pandas.core.frame.DataFrame'>
Int64Index: 3569 entries, 0 to 3592
Data columns (total 5 columns):
category_1 3569 non-null float64
category_1a 3569 non-null float64
category_1b 3569 non-null float64
category_1c 3569 non-null float64
category_1d 3569 non-null float64
dtypes: float64(5)
memory usage: 167.3 KB
from mpl_toolkits.basemap import Basemap
import matplotlib.pyplot as plt def basic_haiti_map(ax=None, lllat=17.25, urlat=20.25,
lllon=-75, urlon=-71):
# create polar stereographic Basemap instance.
m = Basemap(ax=ax, projection='stere',
lon_0=(urlon + lllon) / 2,
lat_0=(urlat + lllat) / 2,
llcrnrlat=lllat, urcrnrlat=urlat,
llcrnrlon=lllon, urcrnrlon=urlon,
resolution='f')
# draw coastlines, state and country boundaries, edge of map.
m.drawcoastlines()
m.drawstates()
m.drawcountries()
return m
---------------------------------------------------------------------------

ImportError                               Traceback (most recent call last)

<ipython-input-66-ec31ba3e955e> in <module>()
----> 1 from mpl_toolkits.basemap import Basemap
2 import matplotlib.pyplot as plt
3
4 def basic_haiti_map(ax=None, lllat=17.25, urlat=20.25,
5 lllon=-75, urlon=-71): ImportError: No module named 'mpl_toolkits.basemap'
fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05) to_plot = ['2a', '1', '3c', '7a'] lllat=17.25; urlat=20.25; lllon=-75; urlon=-71 for code, ax in zip(to_plot, axes.flat):
m = basic_haiti_map(ax, lllat=lllat, urlat=urlat,
lllon=lllon, urlon=urlon) cat_data = data[data['category_%s' % code] == 1] # compute map proj coordinates.
x, y = m(cat_data.LONGITUDE.values, cat_data.LATITUDE.values) m.plot(x, y, 'k.', alpha=0.5)
ax.set_title('%s: %s' % (code, english_mapping[code]))

fig, axes = plt.subplots(nrows=2, ncols=2, figsize=(12, 10))
fig.subplots_adjust(hspace=0.05, wspace=0.05) to_plot = ['2a', '1', '3c', '7a'] lllat=17.25; urlat=20.25; lllon=-75; urlon=-71 def make_plot(): for i, code in enumerate(to_plot):
cat_data = data[data['category_%s' % code] == 1]
lons, lats = cat_data.LONGITUDE, cat_data.LATITUDE ax = axes.flat[i]
m = basic_haiti_map(ax, lllat=lllat, urlat=urlat,
lllon=lllon, urlon=urlon) # compute map proj coordinates.
x, y = m(lons.values, lats.values) m.plot(x, y, 'k.', alpha=0.5)
ax.set_title('%s: %s' % (code, english_mapping[code]))
make_plot()

matplotlib常用操作2的更多相关文章

  1. matplotlib 常用操作

    标准的Python中用列表(list)保存一组值,可以当作数组使用.但由于列表的元素可以是任何对象,因此列表中保存的是对象的指针.这样一来,为了保存一个简单的列表[1,2,3],就需 要有三个指针和三 ...

  2. matplotlib常用操作

    1.根据坐标点绘制: import numpy as np import matplotlib.pyplot as plt x = np.array([1,2,3,4,5,6,7,8]) y = np ...

  3. 二叉树的python可视化和常用操作代码

    二叉树是一个重要的数据结构, 本文基于"二叉查找树"的python可视化 pybst 包, 做了一些改造, 可以支持更一般的"二叉树"可视化. 关于二叉树和二叉 ...

  4. 【三】用Markdown写blog的常用操作

    本系列有五篇:分别是 [一]Ubuntu14.04+Jekyll+Github Pages搭建静态博客:主要是安装方面 [二]jekyll 的使用 :主要是jekyll的配置 [三]Markdown+ ...

  5. php模拟数据库常用操作效果

    test.php <?php header("Content-type:text/html;charset='utf8'"); error_reporting(E_ALL); ...

  6. Mac OS X常用操作入门指南

    前两天入手一个Macbook air,在装软件过程中摸索了一些基本操作,现就常用操作进行总结, 1关于触控板: 按下(不区分左右)            =鼠标左键 control+按下        ...

  7. mysql常用操作语句

    mysql常用操作语句 1.mysql -u root -p   2.mysql -h localhost -u root -p database_name 2.列出数据库: 1.show datab ...

  8. nodejs配置及cmd常用操作

    一.cmd常用操作 1.返回根目录cd\ 2.返回上层目录cd .. 3.查找当前目录下的所有文件dir 4.查找下层目录cd window 二.nodejs配置 Node.js安装包及源码下载地址为 ...

  9. Oracle常用操作——创建表空间、临时表空间、创建表分区、创建索引、锁表处理

    摘要:Oracle数据库的库表常用操作:创建与添加表空间.临时表空间.创建表分区.创建索引.锁表处理 1.表空间 ■  详细查看表空间使用状况,包括总大小,使用空间,使用率,剩余空间 --详细查看表空 ...

随机推荐

  1. Vue路由实现页面跳转的两种方式(router-link和JS)

    Vue.js 路由可以通过不同的 URL 访问不同的内容,实现多视图的单页 Web 应用 1.通过 <router-link> 实现 <router-link> 组件用于设置一 ...

  2. SHOI2008 cactus仙人掌图 和 UOJ87 mx的仙人掌

    cactus仙人掌图 题目描述 如果某个无向连通图的任意一条边至多只出现在一条简单回路(simple cycle)里,我们就称这张图为仙人掌图(cactus).所谓简单回路就是指在图上不重复经过任何一 ...

  3. (java)selenium webdriver学习---实现简单的翻页,将页面内容的标题和标题链接取出

    selenium webdriver学习---实现简单的翻页,将页面内容的标题和标题链接取出: 该情况适合能能循环page=1~n,并且每个网页随着循环可以打开的情况, 注意一定是自己拼接的url可以 ...

  4. 使用Redis分布式锁处理并发,解决超卖问题

    一.使用Apache ab模拟并发压测 1.压测工具介绍 $ ab -n 100 -c 100 http://www.baidu.com/ -n表示发出100个请求,-c模拟100个并发,相当是100 ...

  5. c语言实现整数转换为字符串——不考虑负数

    #include <stdio.h> #include <string.h> #define MAX_LEN 16 #define ESP 1e-5 typedef int i ...

  6. Django 会议室预定

    表结构分析: from django.db import models # Create your models here. from django.db import models from dja ...

  7. JAVA中使用Dom解析XML

    在G盘下新建XML文档:person.xml,XML代码: <?xml version="1.0" encoding="utf-8"?> <s ...

  8. Oracle NVL 函数 nvl nvl2

    Oracle中函数以前介绍的字符串处理,日期函数,数学函数,以及转换函数等等,还有一类函数是通用函数.主要有:NVL,NVL2,NULLIF,COALESCE,这几个函数用在各个类型上都可以. 下面简 ...

  9. Oracle ACS 绑定变量窥视 条件

    1. ACS简介 Oracle Database 11g提供了Adaptive Cursor Sharing (ACS)功能,以克服以往不该共享的游标被共享的可能性.ACS使用两个新指标:sensit ...

  10. Docker+GitLab+Jenkins+kubernetes实现DevOps 持续化集成和持续化部署概念图

    Docker+GitLab+Jenkins+kubernetes实现DevOps 持续化集成和持续化部署概念图 转载自:原创 IT综合 作者:百联达 时间:2017-05-09 15:48:08 41 ...