泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs
作为在空中抛掷四旋翼飞行器后恢复的第一步,它需要检测它使用其加速度计的发射。理想的情况下,在飞行中,加速度计理想地仅测量由于施加的转子推力引起的加速度,即。因此,当四旋翼飞行器发射时,我们可以检测到测量的加速度下降到与当前施加的推力相对应的值。
B. Recovery and Initialization Steps
张宁 Perception-aware Receding Horizon Navigation for MAVs
"链接:https://pan.baidu.com/s/1uBMIFMFudZ6FXs4lSnUOLw
提取码:7br1"
To reach a given destination safely and accurately,a micro aerial vehicle needs to be able to avoid obstaclesand minimize its state estimation uncertainty at the sametime. To achieve this goal, we propose a perception-awarereceding horizon approach. In our method, a single forward-looking camera is used for state estimation and mapping.Using the information from the monocular state estimation andmapping system, we generate a library of candidate trajectoriesand evaluate them in terms of perception quality, collisionprobability, and distance to the goal. The best trajectory toexecute is then selected as the one that maximizes a reward function based on these three metrics. To the best of our knowledge, this is the first work that integrates active vision within a receding horizon navigation framework for a goal reaching task. We demonstrate by simulation and real-world experiments on an actual quadrotor that our active approach leads to improved state estimation accuracy in a goal-reaching task when compared to a purely-reactive navigation system,especially in difficult scenes (e.g., weak texture).
为了安全准确地到达给定目的地,微型飞行器需要能够避开障碍物并同时最小化其状态估计不确定性。为了实现这一目标,我们提出了一种感知感知的后退视界方法。 在我们的方法中,单个前视摄像机用于状态估计和映射。使用来自单眼状态估计和映射系统的信息,我们生成候选轨迹库并根据感知质量,碰撞概率和到目标的距离来评估它们。然后选择最佳执行轨迹作为基于这三个度量最大化奖励函数的轨迹。 就我们所知,这是第一项将主动视觉与后退地平线导航框架相结合以实现目标任务的工作。我们通过仿真和现实世界实验证明,与纯反应式导航系统相比,我们的主动方法可以在达到目标的任务中提高状态估计精度,尤其是在困难场景(例如,弱纹理)中。
泡泡一分钟:Perception-aware Receding Horizon Navigation for MAVs的更多相关文章
- 泡泡一分钟:Tightly-Coupled Aided Inertial Navigation with Point and Plane Features
Tightly-Coupled Aided Inertial Navigation with Point and Plane Features 具有点和平面特征的紧密耦合辅助惯性导航 Yulin Ya ...
- 泡泡一分钟:Efficient Trajectory Planning for High Speed Flight in Unknown Environments
张宁 Efficient Trajectory Planning for High Speed Flight in Unknown Environments 高效飞行在未知环境中的有效轨迹规划链接: ...
- 泡泡一分钟:Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Camera System
Project AutoVision - Localization and 3D Scene Perception for an Autonomous Vehicle with a Multi-Cam ...
- 泡泡一分钟:Aided Inertial Navigation: Unified Feature Representations and Observability Analysis
http://udel.edu/~yuyang/downloads/tr_observabilityII.pdf Aided Inertial Navigation: Unified Feature R ...
- 泡泡一分钟:Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps
Topomap: Topological Mapping and Navigation Based on Visual SLAM Maps Fabian Bl¨ochliger, Marius Feh ...
- 泡泡一分钟:Towards real-time unsupervised monocular depth estimation on CPU
Towards real-time unsupervised monocular depth estimation on CPU Matteo Poggi , Filippo Aleotti , Fa ...
- 泡泡一分钟:A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area
A Multi-Position Joint Particle Filtering Method for Vehicle Localization in Urban Area 城市车辆定位的多位置联合 ...
- 泡泡一分钟:Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions
张宁 Learning Motion Planning Policies in Uncertain Environments through Repeated Task Executions 通过重 ...
- 泡泡一分钟:eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications
eRTIS - A Fully Embedded Real Time 3D Imaging Sonar Sensor for Robotic Applications eRTIS - 用于机器人应用 ...
随机推荐
- UVA1194 Machine Schedule[二分图最小点覆盖]
题意翻译 有两台机器 A,B 分别有 n,m 种模式. 现在有 k 个任务.对于每个任务 i ,给定两个整数$ a_i\(和\) b_i$,表示如果该任务在 A上执行,需要设置模式为 \(a_i\): ...
- 行为型模式(十) 备忘录模式(Memento)
一.动机(Motivate) 我们看上图,一个对象肯定会有很多状态,这些状态肯定会相互转变而促进对象的发展,如果要想在某一时刻把当前对象回复到以前某一时刻的状态,这个情况用"备忘录模式&qu ...
- 07 Node.js安装及环境配置
二.安装Node.js步骤 1.下载对应你系统的Node.js版本:https://nodejs.org/en/download/2.选安装目录进行安装3.环境配置4.测试 开始安装 1.下载完成后, ...
- arp和rarp协议
ARP与RARP详细解析 原创zlnnjit 发布于2016-04-03 15:12:15 阅读数 9544 收藏 展开 地址解析协议 ARP和逆地址解析协议RARP 1.基本关系: 2.地址解析 ...
- Java【基础学习】向下转型和上转型例子
Java小白应付期末考试QWQ class Animal{ public void move() { System.); } } class Dog extends Animal{ public vo ...
- 对日开发中 PG , PL , SE , PM 是什么
PG(ProGramer)指程序员. 这类人才在企业中所占数量最多,通常占到整个项目员工数的70%,也是企业中最紧缺的一类职位,一般为具有专业知识的软件工程技术人员. PL(project leade ...
- Kylin 1 背景、历史与使命
1.1 背景和历史 今天,大数据领域的发展如火如荼,各种新技术层出不穷,整个生态欣欣向荣.作为大数据领域最重要的技术——Apache Hadoop,从诞生至今已有10周年.它最初只是致力于简单的分布式 ...
- LINQPad 应用
https://www.linqpad.net/ 使用 LINQPad 调试linq以及lambda表达式 http://www.studyofnet.com/news/1168.html linq ...
- Web API系列(四) 使用ActionFilterAttribute 记录 WebApi Action 请求和返回结果记录
转自:https://www.cnblogs.com/hnsongbiao/p/7039666.html 需要demo在github中下载: https://github.com/shan333cha ...
- sed 替换文件内容
方法1:sed -i 's/被替换的内容/要替换成的内容/' file 方法2:sed 's/被替换的内容/要替换成的内容/g' file > file.out:mv file.out file ...