可视化库-Matplotlib-3D图(第四天)
1. 画三维图片图 axes = Axes3D(fig)这一步将二维坐标转换为三维坐标,axes.plot_surface()
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D fig = plt.figure()
# 将二维转换为三维的情况
axes = Axes3D(fig)
x = np.arange(-4, 4, 0.25)
y = np.arange(-4, 4, 0.25) X, Y = np.meshgrid(x, y)
Z = np.sin(np.sqrt(X**2 + Y**2))
# 画三维曲面图,rstride=1, cstride=1表示曲面的一个方格的位置
axes.plot_surface(X, Y, Z, rstride=1, cstride=1, cmap='rainbow')
# 画出投影, zm表示投影的方向,offset表示投影所处位置,cmap表示使用的colormap
axes.contour(X, Y, Z, zm='Z', offset=-2, cmap='rainbow')
# 扩大z轴的范围使得图看起来更加的压缩
axes.set_zlim(-2, 2)
plt.show()

2. 构造三维坐标系的两种方法, 同时画三维曲线图ax=fig.add_subplot(111, projection='3d') ax = fig.gca(projection='3d'),同时画三维曲线图
# 构造坐标轴的方法1
fig = plt.figure()
# 构造了三维的坐标轴
ax = fig.add_subplot(111, projection='3d')
plt.show() # 构造坐标轴的方法2
figure = plt.figure()
ax = figure.gca(projection='3d') theta = np.linspace(-4 * np.pi, 4*np.pi, 100)
z = np.linspace(-2, 2, 100)
r = z**2 + 1
x = np.sin(theta) * r
y = np.cos(theta) * r
ax.plot(x, y, z, color='r')
plt.show()

3. 画三维散点图 ax.plot # plt.view_init(40, 20)进行视角的变化
np.random.seed(0)
# 用于生成随机点
def randrange(n, vmin, vmax):
return (vmax-vmin)*np.random.randn(n) + vmin fig = plt.figure()
ax = fig.add_subplot(111, projection='3d')
n = 100 for c, m, zlow, zhigh in [('r', 'o', -50, -25), ('b', '^', -30, -5)]:
xs = randrange(100, 23, 32)
ys = randrange(100, 0, 100)
zs = randrange(100, zlow, zhigh)
ax.scatter(xs, ys, zs, marker=m, color=c)
# 进行视角的变化
ax.view_init(40, 20)
plt.show()

4.画三维条形图(有一点问题)带有颜色编码的条形图
fig = plt.figure()
ax = fig.add_subplot(111, projection='3d') for c, z in zip(['r', 'g', 'b', 'y'], [30, 20, 10, 0]):
xs = np.arange(20)
ys = np.random.rand(20)
cs = [c] * len(len(xs))
ax.bar(xs, ys, zs=z, zdir='y', color=cs)
plt.show()

可视化库-Matplotlib-3D图(第四天)的更多相关文章
- 可视化库-Matplotlib-直方图(第四天)
1.plt.hist(array, bins, color) # array表示数值, bins表示的是bin的范围 data = np.random.normal(0, 20, 1000) # 画 ...
- 可视化库-Matplotlib-条形图(第四天)
1.画两个条形图,bar和barh, 同时axes[0].axhline画一条横线,axes[1].axvline画一条竖线 import numpy as np import matplotlib. ...
- Python数据可视化库-Matplotlib(一)
今天我们来学习一下python的数据可视化库,Matplotlib,是一个Python的2D绘图库 通过这个库,开发者可以仅需要几行代码,便可以生成绘图,直方图,功率图,条形图,错误图,散点图等等 废 ...
- Python可视化库-Matplotlib使用总结
在做完数据分析后,有时候需要将分析结果一目了然地展示出来,此时便离不开Python可视化工具,Matplotlib是Python中的一个2D绘图工具,是另外一个绘图工具seaborn的基础包 先总结下 ...
- Python统计分析可视化库seaborn(相关性图,变量分布图,箱线图等等)
Visualization of seaborn seaborn[1]是一个建立在matplot之上,可用于制作丰富和非常具有吸引力统计图形的Python库.Seaborn库旨在将可视化作为探索和理 ...
- Python可视化库Matplotlib的使用
一.导入数据 import pandas as pd unrate = pd.read_csv('unrate.csv') unrate['DATE'] = pd.to_datetime(unrate ...
- 数据分析处理库pandas及可视化库Matplotlib
一.读取文件 1)读取文件内容 import pandas info = pandas.read_csv('1.csv',encoding='gbk') # 获取文件信息 print(info) pr ...
- Python数据可视化库-Matplotlib(二)
我们接着上次的继续讲解,先讲一个概念,叫子图的概念. 我们先看一下这段代码 import matplotlib.pyplot as plt fig = plt.figure() ax1 = fig.a ...
- python的数据可视化库 matplotlib 和 pyecharts
Matplotlib大家都很熟悉 不谈. ---------------------------------------------------------------------------- ...
- 可视化库-Matplotlib基础设置(第三天)
1.画一个基本的图 import numpy as np import matplotlib.pyplot as plt # 最基本的一个图,"r--" 线条加颜色, 也可以使用l ...
随机推荐
- Linux CentOS7.0下JAVA安装和配置环境变量
一.前言: CentOS7.0虽然自带JDK1.7和1.8,运行“java -version”命令也可以看到版本信息,但是jdk的安装环境不全,比如缺少tool.jar和dt.jar等,这就导致“ja ...
- 浅析promise
Promise是一个构造函数,可以通过new 操作符获取一个promise对象,promise者,人如其名也.对,就是承诺.显示生活中,我们承诺别人一件事,一般会在将来某个时间兑现承诺.而 Promi ...
- hdu 3699 10 福州 现场 J - A hard Aoshu Problem 暴力 难度:0
Description Math Olympiad is called “Aoshu” in China. Aoshu is very popular in elementary schools. N ...
- bzoj1224
题解: 暴力+剪纸 判断一下最大行不行,最小行不行 代码: #include<bits/stdc++.h> ; using namespace std; ],q; int n,m,x,y, ...
- Java 动态代理与反射机制
java动态代理必须的两个类与两个接口: 首先需要有一个接口(委托者需要实现该接口的方法)示例如下: <pre name="code" class="html&qu ...
- WebGL编程指南案例解析之绘制四边形
//案例4,绘制矩形,和三角形类似,但是注意因为一个矩形有4个顶点,按照两个三角形绘制矩形的话,顶点顺序要注意 var vShader = ` attribute vec4 a_Position; v ...
- EasyNVR H5无插件RTSP直播方案在Windows server 2012上修复无法定位GetNumaNodeProcessorMaskEx的问题
今天遇到一个客户在使用EasyNVR无插件安防直播解决方案的时候,在Windows Server 2012上出现一个问题提示: 经过反复的查找,虽然提示上显示问题出在KERNEL32.dll上,但是已 ...
- HDU3861The King’s Problem
HDU3861 kosaraju缩点+最小路径覆盖 为什么是最小路径覆盖呢,我们假设有一个如下DAG图 目前我们1出发到了3处,对于3的儿子4.5.6,肯定是不能彼此到达的.所以最好的情况3只能延 ...
- Hive教程之metastore的三种模式
Hive中metastore(元数据存储)的三种方式: 内嵌Derby方式 Local方式 Remote方式 [一].内嵌Derby方式 这个是Hive默认的启动模式,一般用于单元测试,这种存储方式有 ...
- 6-8 Percolate Up and Down(20 分)
Write the routines to do a "percolate up" and a "percolate down" in a binary min ...