Description

传送门

Solution

考虑对于每一个点:

设圆的坐标为(x,y),点的坐标为(x0,y0)。依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+y2

化简得x02+y02<=2x0*x+2y0*y。

当y0>0,x*(-x0/y0)+0.5y0+x02/(2*y0)<=y,这是一个半平面的式子;当y0<0时同理,但是要变号。

所以对于某个点(x0,y0),我们构造出在它前面所有圆心的凸包。凸包应分为上下。

通过以上式子我们可以得出,当y0>0时应在下凸包上找点(x,y)【该点为直线y=-x0/y0与下凸包的切点,即若此点满足要求,其他任何点都会满足要求。通过这个条件,我们也可以理解把该点理解为2x0*x+2y0*y最小的点】,反之则应该在上凸包上找。

好的让我们假设目前的y0>0,由于凸包上的点(x,y)是按极角排序,x*x0+y*y0是单峰的(这个式子是向量的点乘,其几何意义为:向量a点乘向量b=向量a的长度*向量b的长度*cos(向量a,b的夹角)。所以根据这个定义,证明,就画图吧。qaq正儿八经公式太麻烦了。)上凸包也是一样的。

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const double eps=1e-;
int n;
bool ans[];
struct W{
int tp;double x,y;
friend double operator *(W a,W b){return a.x*b.y-a.y*b.x;}
friend double operator ^(W a,W b){return a.x*b.x+a.y*b.y;}
friend W operator -(W a,W b){return W{,a.x-b.x,a.y-b.y};}
friend bool operator <(W a,W b){return (fabs(a.x-b.x)<eps)?a.y<b.y:a.x<b.x;}
}w[],t[],st[][];//st[0]-上凸包,st[1]-下凸包
double ask(W a,W b){return a.x*b.x+a.y*b.y;}
bool _ok[];
int top0,top1;
bool query(int id)
{
int l,r,mid1,mid2;double minn=1e12;
if (w[id].y<)
{
l=;r=top0;
while (r-l>)
{
mid1=(l*+r)/;mid2=(r*+l)/;
if ((w[id]^st[][mid1])<(w[id]^st[][mid2])) r=mid2;
else l=mid1;
}
for (int i=l;i<=r;i++) minn=min(minn,w[id]^st[][i]); } else
{
l=;r=top1;
while (r-l>)
{
mid1=(l*+r)/;mid2=(r*+l)/;
if ((w[id]^st[][mid1])<(w[id]^st[][mid2])) r=mid2;
else l=mid1;
}
for (int i=l;i<=r;i++) minn=min(minn,w[id]^st[][i]);
}
if (*minn-(w[id].x*w[id].x+w[id].y*w[id].y)<eps) ans[id]=; }
void solve(int l,int r)
{
if (l==r) return;
int mid=(l+r)/,tot=;
solve(l,mid);
solve(mid+,r);
for (int i=l;i<=mid;i++) if (!w[i].tp) t[++tot]=w[i];
sort(t+,t+tot+);
top1=,top0=;
for (int i=;i<=tot;i++)
{
while (top0>&&(st[][top0]-st[][top0-])*(t[i]-st[][top0])>-eps) top0--;
st[][++top0]=t[i];
}
st[][top0+].x=st[][top0].x;st[][top0+].y=-1e12;
for (int i=tot;i;i--)
{
while (top1>&&(st[][top1]-st[][top1-])*(t[i]-st[][top1])>-eps) top1--;
st[][++top1]=t[i];
}
st[][top1+].x=st[][top1].x;st[][top1+].y=1e12;
for (int i=mid+;i<=r;i++) if (w[i].tp&&ans[i]) query(i);
}
bool _is=;
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%d%lf%lf",&w[i].tp,&w[i].x,&w[i].y);
if (!w[i].tp) _is=;else ans[i]=_is;
}
solve(,n);
for (int i=;i<=n;i++) if (w[i].tp)
if (ans[i]) printf("Yes\n");else printf("No\n");
}

[BZOJ2961]共点圆-[凸包+cdq分治]的更多相关文章

  1. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  2. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  3. 【BZOJ2961】共点圆(CDQ分治)

    [BZOJ2961]共点圆(CDQ分治) 题面 BZOJ 题解 设询问点\((x,y)\),圆心是\((X,Y)\) 那么如果点在园内的话就需要满足 \((X-x)^2+(Y-y)^2\le X^2+ ...

  4. [BZOJ2961] 共点圆 [cdq分治+凸包]

    题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...

  5. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  6. bzoj2961 共点圆 bzoj 4140

    题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...

  7. BZOJ2961: 共点圆

    好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...

  8. 【bzoj2961】 共点圆

    http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接) 题意 按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内. Solu ...

  9. Bzoj2149拆迁队:cdq分治 凸包

    国际惯例的题面:我们考虑大力DP.首先重新定义代价为:1e13*选择数量-(总高度+总补偿).这样我们只需要一个long long就能维护.然后重新定义高度为heighti - i,这样我们能选择高度 ...

随机推荐

  1. Glance组件解析

    1 Glance基本框架图 组件 描述 A client 任何使用Glance服务的应用. REST API 通过REST方式暴露Glance的使用接口. Database Abstraction L ...

  2. Django重定向的写法、与直接渲染的区别

    Django重定向的写法.与直接渲染的区别 return redirect (“login”)     #重定向到login页面,状态码是302页面重定向和直接渲染新的页面的区别.重定向实际是指向了另 ...

  3. [Python 网络编程] TCP编程/群聊服务端 (二)

    群聊服务端 需求分析: 1. 群聊服务端需支持启动和停止(清理资源); 2. 可以接收客户端的连接; 接收客户端发来的数据 3. 可以将每条信息分发到所有客户端 1) 先搭架子: #TCP Serve ...

  4. Nginx Web服务器配置

    Nginx是一个轻量级高性能的web服务器,它是为快速响应大量静态文件请求和高效利用系统资源而设计的.与apache使用面向进程或线程的方式处理请求不同,nginx使用异步事件驱动模型在连接高并发的情 ...

  5. vector详讲(二)迭代器

    先看一下代码: #include <iostream> #include <vector> int main() { std::vector<double> dou ...

  6. VC++获取一个GB级大文件的字节大小

    常规的获得小文件(2.1GB以下)的字节大小可以使用ftell,函数 ftell 用于得到文件位置指针当前位置相对于文件首的偏移字节数.使用fseek函数后再调用函数ftell()就能非常容易地确定文 ...

  7. [转].NET设计模式系列文章

    最初写探索设计模式系列的时候,我只是想把它作为自己学习设计模式的读书笔记来写,可是写到今天,设计模式带给我的震撼,以及许多初学者朋友的热心支持,让我下定决心要把这个系列写完写好,那怕花上再多的时间也无 ...

  8. Struts2通配符

    action: struts: or: 请求路径:

  9. 基于MySql数据库的单表与多表联合查询

    这里以学生 班级 身份证 以及课程为例 1,启动MySql数据库  开启服务 2.1.0新建一张班级表 备注:CHARSET = UTF8 (指定编码格式为utf8 防止中文乱码) /*班级表*/ C ...

  10. first-child伪类选择器

    原文链接地址:https://www.cnblogs.com/wangmeijian/p/4562304.html :first-child 选择器用于选取属于其父元素的首个子元素的指定选择器.——w ...