Description

传送门

Solution

考虑对于每一个点:

设圆的坐标为(x,y),点的坐标为(x0,y0)。依题意得,当一个点在圆里,需要满足(x-x0)2+(y-y0)2<=x2+y2

化简得x02+y02<=2x0*x+2y0*y。

当y0>0,x*(-x0/y0)+0.5y0+x02/(2*y0)<=y,这是一个半平面的式子;当y0<0时同理,但是要变号。

所以对于某个点(x0,y0),我们构造出在它前面所有圆心的凸包。凸包应分为上下。

通过以上式子我们可以得出,当y0>0时应在下凸包上找点(x,y)【该点为直线y=-x0/y0与下凸包的切点,即若此点满足要求,其他任何点都会满足要求。通过这个条件,我们也可以理解把该点理解为2x0*x+2y0*y最小的点】,反之则应该在上凸包上找。

好的让我们假设目前的y0>0,由于凸包上的点(x,y)是按极角排序,x*x0+y*y0是单峰的(这个式子是向量的点乘,其几何意义为:向量a点乘向量b=向量a的长度*向量b的长度*cos(向量a,b的夹角)。所以根据这个定义,证明,就画图吧。qaq正儿八经公式太麻烦了。)上凸包也是一样的。

Code

#include<iostream>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<cstring>
using namespace std;
const double eps=1e-;
int n;
bool ans[];
struct W{
int tp;double x,y;
friend double operator *(W a,W b){return a.x*b.y-a.y*b.x;}
friend double operator ^(W a,W b){return a.x*b.x+a.y*b.y;}
friend W operator -(W a,W b){return W{,a.x-b.x,a.y-b.y};}
friend bool operator <(W a,W b){return (fabs(a.x-b.x)<eps)?a.y<b.y:a.x<b.x;}
}w[],t[],st[][];//st[0]-上凸包,st[1]-下凸包
double ask(W a,W b){return a.x*b.x+a.y*b.y;}
bool _ok[];
int top0,top1;
bool query(int id)
{
int l,r,mid1,mid2;double minn=1e12;
if (w[id].y<)
{
l=;r=top0;
while (r-l>)
{
mid1=(l*+r)/;mid2=(r*+l)/;
if ((w[id]^st[][mid1])<(w[id]^st[][mid2])) r=mid2;
else l=mid1;
}
for (int i=l;i<=r;i++) minn=min(minn,w[id]^st[][i]); } else
{
l=;r=top1;
while (r-l>)
{
mid1=(l*+r)/;mid2=(r*+l)/;
if ((w[id]^st[][mid1])<(w[id]^st[][mid2])) r=mid2;
else l=mid1;
}
for (int i=l;i<=r;i++) minn=min(minn,w[id]^st[][i]);
}
if (*minn-(w[id].x*w[id].x+w[id].y*w[id].y)<eps) ans[id]=; }
void solve(int l,int r)
{
if (l==r) return;
int mid=(l+r)/,tot=;
solve(l,mid);
solve(mid+,r);
for (int i=l;i<=mid;i++) if (!w[i].tp) t[++tot]=w[i];
sort(t+,t+tot+);
top1=,top0=;
for (int i=;i<=tot;i++)
{
while (top0>&&(st[][top0]-st[][top0-])*(t[i]-st[][top0])>-eps) top0--;
st[][++top0]=t[i];
}
st[][top0+].x=st[][top0].x;st[][top0+].y=-1e12;
for (int i=tot;i;i--)
{
while (top1>&&(st[][top1]-st[][top1-])*(t[i]-st[][top1])>-eps) top1--;
st[][++top1]=t[i];
}
st[][top1+].x=st[][top1].x;st[][top1+].y=1e12;
for (int i=mid+;i<=r;i++) if (w[i].tp&&ans[i]) query(i);
}
bool _is=;
int main()
{
scanf("%d",&n);
for (int i=;i<=n;i++)
{
scanf("%d%lf%lf",&w[i].tp,&w[i].x,&w[i].y);
if (!w[i].tp) _is=;else ans[i]=_is;
}
solve(,n);
for (int i=;i<=n;i++) if (w[i].tp)
if (ans[i]) printf("Yes\n");else printf("No\n");
}

[BZOJ2961]共点圆-[凸包+cdq分治]的更多相关文章

  1. BZOJ2961: 共点圆(CDQ分治+凸包)

    题面 传送门 题解 这题解法真是多啊--据说可以圆反演转化为动态插入半平面并判断给定点是否在半平面交中,或者化一下改成给定点判断是否所有点都在某一个半平面内-- 鉴于圆反演我也不会,这里讲一下直接推的 ...

  2. bzoj2961 共点圆 (CDQ分治, 凸包)

    /* 可以发现可行的圆心相对于我们要查询的点是在一个半平面上, 然后我们要做的就是动态维护凸壳然后用这个半平面去切它 看看是否是在合法的那一面 然后cdq分治就可以了 代码基本是抄的, */ #inc ...

  3. 【BZOJ2961】共点圆(CDQ分治)

    [BZOJ2961]共点圆(CDQ分治) 题面 BZOJ 题解 设询问点\((x,y)\),圆心是\((X,Y)\) 那么如果点在园内的话就需要满足 \((X-x)^2+(Y-y)^2\le X^2+ ...

  4. [BZOJ2961] 共点圆 [cdq分治+凸包]

    题面 BZOJ传送门 思路 首先考虑一个点$(x_0,y_0)$什么时候在一个圆$(x_1,y_1,\sqrt{x_1^2+y_1^2})$内 显然有:$x_1^2+y_1^2\geq (x_0-x_ ...

  5. BZOJ2961 共点圆[CDQ分治]

    题面 bzoj 其实就是推一下圆的式子 长成这个样子 假设要查询的点是(x, y) 某个圆心是(p, q) \((x - p)^2 + (y - q)^2 \leq p^2 + q^2\) 变成 \( ...

  6. bzoj2961 共点圆 bzoj 4140

    题解: 比较水的一道题 首先我们化简一下式子发现是维护xxo+yyo的最值 显然是用凸包来做 我们可以直接用支持插入删除的凸包 也是nlogn的 因为没有强制在线,我们也可以cdq,考虑前面一半对答案 ...

  7. BZOJ2961: 共点圆

    好久没发了 CDQ分治,具体做法见XHR的论文… /************************************************************** Problem: 29 ...

  8. 【bzoj2961】 共点圆

    http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接) 题意 按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内. Solu ...

  9. Bzoj2149拆迁队:cdq分治 凸包

    国际惯例的题面:我们考虑大力DP.首先重新定义代价为:1e13*选择数量-(总高度+总补偿).这样我们只需要一个long long就能维护.然后重新定义高度为heighti - i,这样我们能选择高度 ...

随机推荐

  1. Kafka TimeoutException: Batch Expired 问题排查

    当前系统中produer配置request.timeout.ms=30000(30秒),但是broker端配置zookeeper.connection.timeout.ms=1000000,kafka ...

  2. 【[USACO12MAR]园林绿化Landscaping】

    我旁边有一个暴力的金牌爷整天欺负我嘤嘤嘤 关我电脑,关我浏览器,还钦定我学不会贪心 没错我就是学不会了 这道题还是非常妙的 我们发现这个土的数量实在是少的可怜,于是我们甚至可以对每一个单位的土都进行贪 ...

  3. POJ2724 Purifying Machine

    嘟嘟嘟 扒下来的题意:迈克有一台可以净化奶酪的机器,用二进制表示净化的奶酪的编号.但是,在某些二进制串中可能包含有\(*\).例如\(01*100\),\(*\)其实就代表可以取\(0\),\(1\) ...

  4. 图论——最短路径 Dijkstra算法、Floyd算法

    1.弗洛伊德算法(Floyd) 弗洛伊算法核心就是三重循环,M [ j ] [ k ] 表示从 j 到 k 的路径,而 i 表示当前 j 到 k 可以借助的点:红色部分表示,如果 j 到 i ,i 到 ...

  5. ThinkPHP5入门(一)----框架篇

    一.命名规范: 下划线法: 函数的命名 配置参数 常量(大写) 数据表和字段 驼峰法: 属性的命名 方法的命名 帕斯卡法: 类名 类文件名 类的命名

  6. disconf实践(二)基于XML的分布式配置文件管理,不会自动reload

    上一篇博文介绍了disconf web的搭建流程,这一篇就介绍disconf client通过配置xml文件来获取disconf管理端的配置信息. 1. 登录管理端,并新建APP,然后上传配置文件 2 ...

  7. FCC Truncate a string 解决方法

    三行搞定 function truncate(str, num) { ab = str.length >num?num>3?str.slice(0,num-3)+ "...&qu ...

  8. DecimalFormat的使用

    DecimalFormat,四舍五入时需要设置RoundingMode 1.占位符0: 比实际数字的位数多,不足的地方用0补上. new DecimalFormat("00.00" ...

  9. 关于换行这个动作,win 和 mac 的实现

    ‘\r'是回车,前者使光标到行首,(carriage return)'\n'是换行,后者使光标下移一格,(line feed) \r 是回车,return\n 是换行,newline 对于换行这个动作 ...

  10. oo第二次总结作业

    OO电梯作业总结 这三周的作业和课堂内容以及OS的课上内容都相同,都是关于多线程方面的知识.在这次作业中由浅入深布置了三项多线程电梯方面的作业,让我们在实践中感受了多线程的工作原理以及各项需要注意的要 ...