第三篇:基于K-近邻分类算法的手写识别系统
前言
本文将继续讲解K-近邻算法的项目实例 - 手写识别系统。
该系统在获取用户的手写输入后,判断用户写的是什么。
为了突出核心,简化细节,本示例系统中的输入为32x32矩阵,分类结果也均为数字。但对于汉字或者别的分类情形原理都是一样的。
有了前面学习的基础,下面直接进入项目开发步骤。
第一步:收集并准备数据
在用户主目录的trainingDigits子目录中,存放的是2000个样本数据。
每个样本一个文件,其中一部分如下所示:

文件命名格式为:
分类标签_标签内序号
如 0_20.txt 就表示该样本是分类标签为0的第20个特征集。20就是个序号以区分标签内不同文件而已,没其他意义。
样本数据都是32x32矩阵:

对于这样的二维数据,如何判断样本和目标对象的距离呢?首先想到的是可以将二维降到一维。
当然也可以考虑去找找二维的距离求解方法。
下面给出降维函数:
# ==============================================
# 输入:
# 训练集文件名(含路径)
# 输出:
# 降维后的样本数据(这里一个文件一份样本数据)
# ==============================================
def img2vector(filename):
'将32x32的矩阵转换为1024一维向量' # 初始化返回向量
returnVect = numpy.zeros((1,1024)) # 打开样本数据文件
fr = open(filename) # 降维处理
for i in range(32):
lineStr = fr.readline()
for j in range(32):
returnVect[0,32*i+j] = int(lineStr[j]) return returnVect
第二步:测试算法
K临近的分类函数代码在之前的文章K-近邻分类算法原理分析与代码实现中给出了,这里直接调用:
# =================================================
# 输入:
# 空
# 输出:
# 对指定的测试集文件,指定的训练集数据进行K近邻分类
# 并打印结果信息
# =================================================
def handwritingClassTest():
'手写数字识别系统测试代码' # 分类列表
hwLabels = [] # 获取所有训练集文件名
trainingFileList = os.listdir('/home/fangmeng/trainingDigits') # 定义训练集结构体
m = len(trainingFileList)
trainingMat = numpy.zeros((m, 1024)) for i in range(m):
# 当前训练集文件名
filenameStr = trainingFileList[i]
# 文件名(filenameStr去掉.txt后缀)
fileStr = filenameStr.split('.')[0]
# 分类标签
classNumStr = int(fileStr.split('_')[0])
# 将分类标签加入分类列表
hwLabels.append(classNumStr)
# 将当前训练集文件降维后加入到训练集结构体
trainingMat[i] = img2vector('/home/fangmeng/trainingDigits/%s' % filenameStr) # 获取所有测试集文件名
testFileList = os.listdir('/home/fangmeng/testDigits')
# 错误分类记数
errorCount = 0
# 测试集文件个数
mTest = len(testFileList) print "错误的分类结果如下:"
for i in range(mTest):
# 当前测试集文件名
fileNameStr = testFileList[i]
# 文件名(filenameStr去掉.txt后缀)
fileStr = fileNameStr.split('.')[0]
# 分类标签
classNumStr = int(fileStr.split('_')[0])
# 将当前测试集文件降维
vectorUnderTest = img2vector('/home/fangmeng/testDigits/%s' % fileNameStr)
# 对当前测试文件进行分类
classifierResult = classify0(vectorUnderTest, trainingMat, hwLabels, 3) if (classifierResult != classNumStr):
print "分类结果: %d, 实际结果: %d" % (classifierResult, classNumStr)
errorCount += 1.0 print "\n总错误数: %d" % errorCount
print "\n总错误数: %f" % (errorCount/float(mTest))
运行结果:

小结
1. K-邻近算法的本质是用来分类的,要从分类的思想去思考这个算法的运用。
2. 再强调一次K-邻近算法是没有训练过程的,这点和以后学习的其他分类方法,比如决策树对比后就更清楚了。
3. K-邻近算法的效率很低,不论是从时间还是空间上看(单就这个简单项目都跑得很慢)。因此需要学习更多更优化的算法。
4. 有兴趣有时间可以考虑在hadoop/spark集群下实现这个项目或使用该算法的其他类似项目,定能大幅度提升性能。
第三篇:基于K-近邻分类算法的手写识别系统的更多相关文章
- 【Machine Learning in Action --2】K-近邻算法构造手写识别系统
为了简单起见,这里构造的系统只能识别数字0到9,需要识别的数字已经使用图形处理软件,处理成具有相同的色彩和大小:宽高是32像素的黑白图像.尽管采用文本格式存储图像不能有效地利用内存空间,但是为了方便理 ...
- 《机器学习实战》之k-近邻算法(手写识别系统)
这个玩意和改进约会网站的那个差不多,它是提前把所有数字转换成了32*32像素大小的黑白图,然后转换成字符图(用0,1表示),将所有1024个像素点用一维矩阵保存下来,这样就可以通过knn计算欧几里得距 ...
- 基于OpenCV的KNN算法实现手写数字识别
基于OpenCV的KNN算法实现手写数字识别 一.数据预处理 # 导入所需模块 import cv2 import numpy as np import matplotlib.pyplot as pl ...
- KNN分类算法实现手写数字识别
需求: 利用一个手写数字“先验数据”集,使用knn算法来实现对手写数字的自动识别: 先验数据(训练数据)集: ♦数据维度比较大,样本数比较多. ♦ 数据集包括数字0-9的手写体. ♦每个数字大约有20 ...
- K近邻分类算法实现 in Python
K近邻(KNN):分类算法 * KNN是non-parametric分类器(不做分布形式的假设,直接从数据估计概率密度),是memory-based learning. * KNN不适用于高维数据(c ...
- 查看neighbors大小对K近邻分类算法预测准确度和泛化能力的影响
代码: # -*- coding: utf-8 -*- """ Created on Thu Jul 12 09:36:49 2018 @author: zhen &qu ...
- k-近邻算法-手写识别系统
手写数字是32x32的黑白图像.为了能使用KNN分类器,我们需要把32x32的二进制图像转换为1x1024 1. 将图像转化为向量 from numpy import * # 导入科学计算包numpy ...
- 第二篇:基于K-近邻分类算法的约会对象智能匹配系统
前言 假如你想到某个在线约会网站寻找约会对象,那么你很可能将该约会网站的所有用户归为三类: 1. 不喜欢的 2. 有点魅力的 3. 很有魅力的 你如何决定某个用户属于上述的哪一类呢?想必你会分析用户的 ...
- 机器学习经典算法具体解释及Python实现--K近邻(KNN)算法
(一)KNN依旧是一种监督学习算法 KNN(K Nearest Neighbors,K近邻 )算法是机器学习全部算法中理论最简单.最好理解的.KNN是一种基于实例的学习,通过计算新数据与训练数据特征值 ...
随机推荐
- discuz论坛折腾记录
1.邮箱验证 自带的是用php sendmail,好在可以用smtp 如果用企业邮箱,一般都是ssl,需要设置为,参考此帖 STMP服务器 - QQ 企业邮ssl://smtp.exmail.qq.c ...
- php memcached在windows上的使用
php的memcached是比memcache,效率更高的memcache缓存扩展. 然而windows下并没有这个扩展,于是做单元测试时要把代码上传到linux服务器,再运行,甚是麻烦. (当然另外 ...
- @RequestMapping @ResponseBody 和 @RequestBody 注解的用法与区别
1.@RequestMapping 国际惯例先介绍什么是@RequestMapping,@RequestMapping 是一个用来处理请求地址映射的注解,可用于类或方法上.用于类上,表示类中的所有响应 ...
- input输入框用el对数字格式化
<input name="doubleInput" type="text" maxlength="32" id="doubl ...
- Js加密与解密
<html><head><META HTTP-EQUIV="MSThemeCompatible" CONTENT="Yes"> ...
- android 虚拟键盘控制
软键盘显示的原理 软键盘的本质是什么?软键盘其实是一个Dialog! InputMethodService为我们的输入法创建了一个Dialog,并且将该Dialog的Window的某些参数(如Grav ...
- jump display
查找了数据库,再在while里拼接成json是很麻烦的,所以,jump display 获得数组 <?php header("Content-Type:text/html; chars ...
- 第三百一十七节,Django框架,缓存
第三百一十七节,Django框架,缓存 由于Django是动态网站,所有每次请求均会去数据进行相应的操作,当程序访问量大时,耗时必然会更加明显,最简单解决方式是使用:缓存,缓存将一个某个views的返 ...
- error: expected declaration specifiers or '...' before 'xxxx'(xxxx是函数形参)
今天汗颜了一大阵 早上,在编译我的源代码的时候竟然不通过编译,上个星期六也出现了这种情况,当时不知道怎么弄的后来又通过编译了,可能是原来的.o文件没有make clean 还保存在那里,以至于蒙过去了 ...
- 【Java面试题】33 HashMap和Hashtable的区别
1 HashMap不是线程安全的 hastmap是一个接口 是map接口的子接口,是将键映射到值的对象,其中键和值都是对象,并且不能包含重复键,但可以包含重复值.HashMap允许null key和n ...