DataFrames与RDDs的相互转换
import org.apache.spark.sql.{DataFrameReader, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object InferringSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val lineRDD = sc.textFile("hdfs://192.168.19.131:9000/person.tzt").map(_.split(","))
//创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x().toInt, x(), x().toInt))
//导入隐式转换,如果不导入无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF
//注册表
personDF.registerTempTable("intsmaze")
//传入SQL
val df = sqlContext.sql("select * from intsmaze order by age desc limit 2")
//将结果以JSON的方式存储到指定位置
df.write.json("hdfs://192.168.19.131:9000/personresult")
//停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
spark shell中不需要导入sqlContext.implicits._是因为spark shell默认已经自动导入了。

打包提交到yarn集群:
/home/hadoop/app/spark/bin/spark-submit --class InferringSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar
通过编程接口指定Schema(Programmatically Specifying the Schema)
当JavaBean不能被预先定义的时候,编程创建DataFrame分为三步:
从原来的RDD创建一个Row格式的RDD.
创建与RDD中Rows结构匹配的StructType,通过该StructType创建表示RDD的Schema.
通过SQLContext提供的createDataFrame方法创建DataFrame,方法参数为RDD的Schema.
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf}
object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val personRDD = sc.textFile(args()).map(_.split(","))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p().toInt, p().trim, p().toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//注册表
personDataFrame.registerTempTable("intsmaze")
//执行SQL
val df = sqlContext.sql("select * from intsmaze order by age desc ")
//将结果以JSON的方式存储到指定位置
df.write.json(args())
//停止Spark Context
sc.stop()
}
}
将程序打成jar包,上传到spark集群,提交Spark任务
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
在maven项目的pom.xml中添加Spark SQL的依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.</artifactId>
<version>1.6.</version>
</dependency>
DataFrames与RDDs的相互转换的更多相关文章
- 2.sparkSQL--DataFrames与RDDs的相互转换
Spark SQL支持两种RDDs转换为DataFrames的方式 使用反射获取RDD内的Schema 当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好. 通 ...
- Spark SQL 之 DataFrame
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...
- Spark SQL 官方文档-中文翻译
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...
- SparkSql官方文档中文翻译(java版本)
1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...
- Spark记录-SparkSql官方文档中文翻译(部分转载)
1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查 ...
- 转】Spark SQL 之 DataFrame
原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...
- DataFrames,Datasets,与 SparkSQL
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)
文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...
- Spark RDDs vs DataFrames vs SparkSQL
简介 Spark的 RDD.DataFrame 和 SparkSQL的性能比较. 2方面的比较 单条记录的随机查找 aggregation聚合并且sorting后输出 使用以下Spark的三种方式来解 ...
随机推荐
- 【java】java内存模型(2)--volatile内存语义详解
多线程并发编程中synchronized和Volatile都扮演着重要的角色,Volatile是轻量级的synchronized,它在多处理器开发中保证了共享变量的“可见性”.可见性的意思是当一个线程 ...
- fildder教程
转载地址:写得很不错的fildder教程 http://kb.cnblogs.com/page/130367/ Fiddler的基本介绍 Fiddler的官方网站: www.fiddler2.c ...
- easyui_datagrid合并行单击某行选中所有
实现如下功能: 代码: <table id="dg" class="easyui-datagrid" title="Merge Cells fo ...
- oracle数据库触发器(trigger)用法总结
from:http://blog.csdn.net/zhanzhib/article/details/48729417 触发器的意思就是当我们对数据库对象(一般是表或视图)进行insert.updat ...
- 利用Sharepoint 创建轻量型应用之基本功能配置!
博客同步课程.假设你想跟着视频学习,请跟着例如以下视频: http://edu.csdn.net/course/detail/2097 1. 点击安装程序,出现的界面先期安装完毕准备工具,准备工具 ...
- MySql阶段案例
MySql阶段案例 案例一 涉及的知识点:数据库和表的基本操作,添加数据,多表操作 题目 使用sql语句请按照要求完成如下操作: (1)创建一个名称为test的数据库. (2)在test数据库中创建两 ...
- redis的初认识
Redis是一个开源,先进的key-value存储,并用于构建高性能,可扩展的Web应用程序的完美解决方案. Redis从它的许多竞争继承来的三个主要特点: Redis数据库完全在内存中,使用磁盘仅用 ...
- 【渗透测试学习平台】 web for pentester -6.命令执行
命令执行漏洞 windows支持: | ping 127.0.0.1|whoami || ping 2 || whoami (哪条名 ...
- echo\awk\sed\tee\curl的使用-shell
echo的使用:http://man.linuxde.net/echo awk的使用:http://man.linuxde.net/awk sed的使用:http://man.linuxde.net/ ...
- eclipse导入maven项目时报Could not calculate build plan: Plugin org.apache.maven.plugins:maven-resources
在用Eclipse IDE for Java EE Developers进行maven项目的开发时,报错Could not calculate build plan: Plugin org.apach ...