Spark SQL支持两种RDDs转换为DataFrames的方式
使用反射获取RDD内的Schema
    当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好。
通过编程接口指定Schema
    通过Spark SQL的接口创建RDD的Schema,这种方式会让代码比较冗长。
    这种方法的好处是,在运行时才知道数据的列以及列的类型的情况下,可以动态生成Schema。
使用反射获取Schema(Inferring the Schema Using Reflection)
import org.apache.spark.sql.{DataFrameReader, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object InferringSchema {
def main(args: Array[String]) { //创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze") //SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc) //从指定的地址创建RDD
val lineRDD = sc.textFile("hdfs://192.168.19.131:9000/person.tzt").map(_.split(",")) //创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x().toInt, x(), x().toInt)) //导入隐式转换,如果不导入无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF //注册表
personDF.registerTempTable("intsmaze")
//传入SQL
val df = sqlContext.sql("select * from intsmaze order by age desc limit 2") //将结果以JSON的方式存储到指定位置
df.write.json("hdfs://192.168.19.131:9000/personresult") //停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)

spark shell中不需要导入sqlContext.implicits._是因为spark shell默认已经自动导入了。

打包提交到yarn集群:

/home/hadoop/app/spark/bin/spark-submit --class InferringSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar

通过编程接口指定Schema(Programmatically Specifying the Schema)

当JavaBean不能被预先定义的时候,编程创建DataFrame分为三步:

从原来的RDD创建一个Row格式的RDD.

创建与RDD中Rows结构匹配的StructType,通过该StructType创建表示RDD的Schema.

通过SQLContext提供的createDataFrame方法创建DataFrame,方法参数为RDD的Schema.

import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf} object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc) //从指定的地址创建RDD
val personRDD = sc.textFile(args()).map(_.split(",")) //通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
) //将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p().toInt, p().trim, p().toInt)) //将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema) //注册表
personDataFrame.registerTempTable("intsmaze")
//执行SQL
val df = sqlContext.sql("select * from intsmaze order by age desc ")
//将结果以JSON的方式存储到指定位置
df.write.json(args())
//停止Spark Context
sc.stop()
}
}

将程序打成jar包,上传到spark集群,提交Spark任务

/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult

在maven项目的pom.xml中添加Spark SQL的依赖

<dependency>
  <groupId>org.apache.spark</groupId>
  <artifactId>spark-sql_2.</artifactId>
  <version>1.6.</version>
</dependency>

DataFrames与RDDs的相互转换的更多相关文章

  1. 2.sparkSQL--DataFrames与RDDs的相互转换

    Spark SQL支持两种RDDs转换为DataFrames的方式 使用反射获取RDD内的Schema     当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好. 通 ...

  2. Spark SQL 之 DataFrame

    Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...

  3. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  4. SparkSql官方文档中文翻译(java版本)

    1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...

  5. Spark记录-SparkSql官方文档中文翻译(部分转载)

    1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查 ...

  6. 转】Spark SQL 之 DataFrame

    原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...

  7. DataFrames,Datasets,与 SparkSQL

    v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...

  8. A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)

    文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...

  9. Spark RDDs vs DataFrames vs SparkSQL

    简介 Spark的 RDD.DataFrame 和 SparkSQL的性能比较. 2方面的比较 单条记录的随机查找 aggregation聚合并且sorting后输出 使用以下Spark的三种方式来解 ...

随机推荐

  1. 如何Request客户端的传值的Data

    我们在做B/S的项目,客户端向服务端传值的时候,一般都是request接受. Request常用三个接受方式为:Request.QueryString,Request.Form,Request.Par ...

  2. Linux下安装配置SVN

    1.检查系统上是否安装了SVN rpm -qa subversion 没有安装,则使用以下命令安装 yum -y install  subversion 2.配置svn并启动svn服务 (1) 指定s ...

  3. SpringMvc 400 Bad Request解决方法

    今天做项目的时候突然报出400 Bad Request错误,后台没有出现任何问题. 首先我看了看log日志中没有接受到任何参数,可以确定这个请求并没有发送出去,所以应该是前台数据提交的问题. 然后我看 ...

  4. BNU4208:Bubble sort

    冒泡排序(BubbleSort)的基本概念是:依次比较相邻的两个数,将小数放在前面,大数放在后面.即首先比较第1个和第2个数,将小数放前,大数放后.然后比较第2个数和第3个数,将小数放前,大数放后,如 ...

  5. Go基础---->go的基础学习(二)

    这里记录的是go中函数的一些基础知识.道听途说终是浅,身临其境方知深. go的基础知识 一.go中函数的基础使用 package main import ( "fmt" " ...

  6. Git介绍和基本原理

    官方文档:http://git-scm.com/doc 1.1 起步 - 关于版本控制 本章关于开始学习 Git. 我们从介绍有关版本控制工具的一些背景知识开始,然后讲解如何在你的系统运行 Git,最 ...

  7. 以用户名注册来分析三种Action获取数据的方式

    1.注入属性 直接注入属性: public String userName; public String getUserName() { return userName; } public void ...

  8. ios 监听设备旋转方向

    -(void)didRotateFromInterfaceOrientation:(UIInterfaceOrientation)fromInterfaceOrientation { if(fromI ...

  9. Win10安装软件时出现2502、2503错误代码的问题

    主要是权限不够,C:\Windows\temp先访问权限 找到该目录,选择temp文件夹,右键弹出快捷菜单,选择“管理员取得所有权”.确定,OK. 再安装软件OK.

  10. 委托(Func与Action)

    1.平时我们如果要用到委托一般都是先声明一个委托类型,比如: private delegate string Say(); string说明适用于这个委托的方法的返回类型是string类型,委托名Sa ...