DataFrames与RDDs的相互转换
import org.apache.spark.sql.{DataFrameReader, SQLContext}
import org.apache.spark.{SparkConf, SparkContext}
object InferringSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val lineRDD = sc.textFile("hdfs://192.168.19.131:9000/person.tzt").map(_.split(","))
//创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x().toInt, x(), x().toInt))
//导入隐式转换,如果不导入无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF
//注册表
personDF.registerTempTable("intsmaze")
//传入SQL
val df = sqlContext.sql("select * from intsmaze order by age desc limit 2")
//将结果以JSON的方式存储到指定位置
df.write.json("hdfs://192.168.19.131:9000/personresult")
//停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
spark shell中不需要导入sqlContext.implicits._是因为spark shell默认已经自动导入了。

打包提交到yarn集群:
/home/hadoop/app/spark/bin/spark-submit --class InferringSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar
通过编程接口指定Schema(Programmatically Specifying the Schema)
当JavaBean不能被预先定义的时候,编程创建DataFrame分为三步:
从原来的RDD创建一个Row格式的RDD.
创建与RDD中Rows结构匹配的StructType,通过该StructType创建表示RDD的Schema.
通过SQLContext提供的createDataFrame方法创建DataFrame,方法参数为RDD的Schema.
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf}
object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-intsmaze")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val personRDD = sc.textFile(args()).map(_.split(","))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p().toInt, p().trim, p().toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//注册表
personDataFrame.registerTempTable("intsmaze")
//执行SQL
val df = sqlContext.sql("select * from intsmaze order by age desc ")
//将结果以JSON的方式存储到指定位置
df.write.json(args())
//停止Spark Context
sc.stop()
}
}
将程序打成jar包,上传到spark集群,提交Spark任务
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode cluster \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
/home/hadoop/app/spark/bin/spark-submit --class SpecifyingSchema \
--master yarn \
--deploy-mode client \
--driver-memory 512m \
--executor-memory 512m \
--executor-cores \
--queue default \
/home/hadoop/sparksql-1.0-SNAPSHOT.jar \
hdfs://192.168.19.131:9000/person.txt hdfs://192.168.19.131:9000/intsmazeresult
在maven项目的pom.xml中添加Spark SQL的依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.</artifactId>
<version>1.6.</version>
</dependency>
DataFrames与RDDs的相互转换的更多相关文章
- 2.sparkSQL--DataFrames与RDDs的相互转换
Spark SQL支持两种RDDs转换为DataFrames的方式 使用反射获取RDD内的Schema 当已知类的Schema的时候,使用这种基于反射的方法会让代码更加简洁而且效果也很好. 通 ...
- Spark SQL 之 DataFrame
Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...
- Spark SQL 官方文档-中文翻译
Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...
- SparkSql官方文档中文翻译(java版本)
1 概述(Overview) 2 DataFrames 2.1 入口:SQLContext(Starting Point: SQLContext) 2.2 创建DataFrames(Creating ...
- Spark记录-SparkSql官方文档中文翻译(部分转载)
1 概述(Overview) Spark SQL是Spark的一个组件,用于结构化数据的计算.Spark SQL提供了一个称为DataFrames的编程抽象,DataFrames可以充当分布式SQL查 ...
- 转】Spark SQL 之 DataFrame
原博文出自于: http://www.cnblogs.com/BYRans/p/5003029.html 感谢! Spark SQL 之 DataFrame 转载请注明出处:http://www.cn ...
- DataFrames,Datasets,与 SparkSQL
v\:* {behavior:url(#default#VML);} o\:* {behavior:url(#default#VML);} w\:* {behavior:url(#default#VM ...
- A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets(中英双语)
文章标题 A Tale of Three Apache Spark APIs: RDDs, DataFrames, and Datasets 且谈Apache Spark的API三剑客:RDD.Dat ...
- Spark RDDs vs DataFrames vs SparkSQL
简介 Spark的 RDD.DataFrame 和 SparkSQL的性能比较. 2方面的比较 单条记录的随机查找 aggregation聚合并且sorting后输出 使用以下Spark的三种方式来解 ...
随机推荐
- LLE局部线性嵌入算法
非线性降维 流形学习 算法思想有些类似于NLM,但是是进行的降维操作. [转载自] 局部线性嵌入(LLE)原理总结 - yukgwy60648的博客 - CSDN博客 https://blog.csd ...
- [转]ASP.NET MVC 5 - 查询Details和Delete方法
在这部分教程中,接下来我们将讨论自动生成的Details和Delete方法. 查询Details和Delete方法 打开Movie控制器并查看Details方法. public ActionResul ...
- Oracle-随机数获取
1.获取10-100的数据,保留两位小数 select trunc(dbms_random.value(10,100),2) from dual ; 2.获取0-1的小数 select dbms_ra ...
- Linux mysql 命令
mysql 是 MySQL 服务的一个命令行工具,常见用法如下: [root@localhost ~]$ mysql -uroot -p' # 本地连接 MySQL 服务 [root@localhos ...
- Linux echo 命令
echo命令用于输出指定的字符串,常见用法如下: [root@localhost ~]$ echo # 输出一个空白行[root@localhost ~]$ echo "hello worl ...
- oracle12c创建用户和表空间出现的问题
Oracle12c 中,增加了可插接数据库的概念,即PDB,允许一个数据库容器(CDB)承载多个可插拔数据库(PDB).CDB全称为 ContainerDatabase,中文翻译为数据库容器,PDB全 ...
- spring AOP底层原理实现——jdk动态代理
spring AOP底层原理实现——jdk动态代理
- 【转】DevOps的前世今生
转自:http://www.infoq.com/cn/news/2016/09/learn-devops-from-reports 目前在国外,互联网巨头如Google.Facebook.Amazon ...
- 【BZOJ5082】弗拉格 矩阵乘法
[BZOJ5082]弗拉格 Description “如果明天进了面试,我就去爆妹子的照”——有妹子的丁相允作为一个oier,自然不能立太多flag,让我们来看一道和flag有关的题目吧 给你n个fl ...
- 【BZOJ3932】[CQOI2015]任务查询系统 主席树
[BZOJ3932][CQOI2015]任务查询系统 Description 最近实验室正在为其管理的超级计算机编制一套任务管理系统,而你被安排完成其中的查询部分.超级计算机中的 任务用三元组(Si, ...