Description

Input

Output

Sample Input

4 5
1 2 5
2 3 5
3 1 5
2 4 3
4 1 3

Sample Output

3.66666667

Solution

二分一个$ans$,然后每条边减去$ans$,若存在负环则$ans$合法。
判断个入队20次就很稳了。

Code

 #include<iostream>
#include<cstring>
#include<cstdio>
#include<queue>
#define N (3009)
using namespace std; double eps=1e-,dis[N];
struct Edge{int to,next,len;}edge[N*];
int n,m,u,v,l,cnt[N],used[N],head[N],num_edge;
queue<int>q; void add(int u,int v,int l)
{
edge[++num_edge].to=v;
edge[num_edge].len=l;
edge[num_edge].next=head[u];
head[u]=num_edge;
} bool SPFA(double mid)
{
memset(cnt,,sizeof(cnt));
memset(used,,sizeof(used));
for (int i=; i<=n; ++i) dis[i]=1e18;
while (!q.empty()) q.pop();
dis[]=; used[]=true; q.push();
while (!q.empty())
{
int x=q.front(); q.pop();
for (int i=head[x]; i; i=edge[i].next)
if (dis[x]+edge[i].len-mid<dis[edge[i].to])
{
dis[edge[i].to]=dis[x]+edge[i].len-mid;
if (!used[edge[i].to])
{
cnt[edge[i].to]++;
if (cnt[edge[i].to]>) return true;
used[edge[i].to]=true;
q.push(edge[i].to);
}
}
used[x]=false;
}
return false;
} int main()
{
scanf("%d%d",&n,&m);
for (int i=; i<=m; ++i)
scanf("%d%d%d",&u,&v,&l),add(u,v,l);
double l=-1e7, r=1e7;
while (r-l>eps)
{
double mid=(l+r)/;
if (SPFA(mid)) r=mid;
else l=mid;
}
printf("%.8lf\n",l);
}

BZOJ1486:[HNOI2009]最小圈(最短路,二分)的更多相关文章

  1. BZOJ1486 HNOI2009 最小圈 【01分数规划】

    BZOJ1486 HNOI2009 最小圈 Description 应该算是01分数规划的裸板题了吧..但是第一次写还是遇到了一些困难,vis数组不清零之类的 假设一个答案成立,那么一定可以找到一个环 ...

  2. bzoj千题计划227:bzoj1486: [HNOI2009]最小圈

    http://www.lydsy.com/JudgeOnline/problem.php?id=1486 二分答案 dfs版spfa判负环 #include<queue> #include ...

  3. bzoj1486: [HNOI2009]最小圈

    二分+dfs. 这道题求图的最小环的每条边的权值的平均值μ. 这个平均值是大有用处的,求它我们就不用记录这条环到底有几条边构成. 如果我们把这个图的所有边的权值减去μ,就会出现负环. 所以二分求解. ...

  4. 2018.09.24 bzoj1486: [HNOI2009]最小圈(01分数规划+spfa判负环)

    传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #inc ...

  5. 分数规划(Bzoj1486: [HNOI2009]最小圈)

    题面 传送门 分数规划 分数规划有什么用? 可以把带分数的最优性求解式化成不带除发的运算 假设求max{\(\frac{a}{b},b>0\)} 二分一个权值\(k\) 令\(\frac{a}{ ...

  6. [bzoj1486][HNOI2009]最小圈——分数规划+spfa+负环

    题目 传送门 题解 这个题是一个经典的分数规划问题. 把题目形式化地表示,就是 \[Minimize\ \lambda = \frac{\sum W_{i, i+1}}{k}\] 整理一下,就是 \[ ...

  7. 【BZOJ1486】[HNOI2009]最小圈 分数规划

    [BZOJ1486][HNOI2009]最小圈 Description Input Output Sample Input 4 5 1 2 5 2 3 5 3 1 5 2 4 3 4 1 3 Samp ...

  8. BZOJ 1486: [HNOI2009]最小圈( 二分答案 + dfs判负圈 )

    二分答案m, 然后全部边权减掉m, 假如存在负圈, 那么说明有平均值更小的圈存在. 负圈用dfs判断. ------------------------------------------------ ...

  9. [HNOI2009]最小圈 (二分答案+负环)

    题面:[HNOI2009]最小圈 题目描述: 考虑带权的有向图\(G=(V,E)\)以及\(w:E\rightarrow R\),每条边\(e=(i,j)(i\neq j,i\in V,j\in V) ...

随机推荐

  1. JAVA字符编码测试

    几点注意: 1,ASCII码和ISO-8859-1都是单字节编码,ASCII码能表示128个字符,ISO-8859-1总共能表示256个字符.都不能表示中文,如果中文字符或其它不在IOS-8859码值 ...

  2. “PPT中如何插入和提取swf文件”的解决方案

    解决方案: 如何在PPT中插入swf文件: 1.依次单击Office按钮,Powerpoint选项,勾选“在功能区显示‘开发工具’选项卡”后,确定: 2.单击“开发工具”选项卡中的“其他控件”按钮,然 ...

  3. 六、curator recipes之屏障barrier

    简介 curator针对分布式场景实现了分布式屏障:barrier.我们在分布式系统中可以使用barrier去阻塞进程,知道某个条件被触发.其实跟Java多线程的barrier是一样的. 例如:当两个 ...

  4. DButils分析

    package com.ldf.utils; import java.sql.Connection; public class DBUtils { private static String driv ...

  5. groovy运算符

    import java.util.regex.Matcher /** * Created by Jxy on 2018/12/20 10:29 * groovy运算符 */ /*class opera ...

  6. plSql读取Oracle数据库中文乱码

    新建环境变量,设置变量名:NLS_LANG,变量值:SIMPLIFIED CHINESE_CHINA.ZHS16GBK,确定即可

  7. BZOJ4513: [Sdoi2016]储能表(数位dp)

    题意 题目链接 Sol 一点思路都没有,只会暴力,没想到标算是数位dp??Orz 首先答案可以分成两部分来统计 设 \[ f_{i,j}= \begin{aligned} i\oplus j & ...

  8. 【HTML基础】<acronym>和<abbr>的区别

    缩写标签<acronym> <abbr>的区别 大家都知道HTML定义缩写有<acronym> <abbr>两种标签,但是经常分不清楚他们.这两个标签虽 ...

  9. VS2013下使用log4cplus

    原文:http://blog.csdn.net/qq_35850668/article/details/52522932 最近工作需要,需要使用log库来完善日志类记录,由于之前没什么经验,遇到了很多 ...

  10. token 和 服务器端auth0-JWT包的使用

    移动客户端和服务器端在用户登录上经常使用的是一个叫做token的认证方法 token是什么? token顾名思义, 令牌, 意思就是说,第一次用户登录验证之后,服务器返回一个token令牌,之后客户端 ...