bzoj2956: 模积和(数论)
先算出无限制的情况,再减去i==j的情况。
无限制的情况很好算,有限制的情况需要将式子拆开。


注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int mod=,six=;
int n,m,sumn,summ,l1,r1,l2,r2,l,r;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int solve(int n,int m)
{
int sum=;
for(int i=;i<=n;i=r+)
{
l=m/(m/i+)+;r=m/(m/i);
if(r>=n)r=n;
sum=MOD(sum+(1ll*(m/i)*(r-l+)%mod*(l+r)%mod*((mod+)>>)%mod));
}
return sum;
}
int pfh(int n){return 1ll*n%mod*(n+)%mod*(*n+)%mod*six%mod;}
int main()
{
read(n);read(m);
sumn=(1ll*n*n-solve(n,n))%mod;summ=(1ll*m*m-solve(m,m))%mod;
int sum=1ll*min(n,m)*n%mod*m%mod;
for(int i=;i<=min(n,m);i=r+)
{
r=min(n/(n/i),m/(m/i));
if(r>min(n,m))r=min(n,m);
sum=MOD(sum+1ll*(n/i)*(m/i)%mod*MOD(pfh(r)+mod-pfh(i-))%mod);
}
sum=(sum+mod-(1ll*m*solve(min(n,m),n)%mod)+mod-(1ll*n*solve(min(n,m),m)%mod))%mod;
printf("%lld\n",MOD(1ll*sumn*summ%mod+mod-sum));
}
bzoj2956: 模积和(数论)的更多相关文章
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- 【bzoj2956】模积和 数论
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...
- 【数论分块】bzoj2956: 模积和
数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和——整除分块
题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...
- bzoj 2956: 模积和 ——数论
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
随机推荐
- UGUI简易摇杆
实现 直接使用系统自带圆形控件图标 编写脚本, 实现UGUI拖拽事件 将多拽范围限定于给定半径和圆心的圆内 计算出等同于Input.GetAxis()的值,直接控制被控制物体 代码 using Sys ...
- [leetcode]三数之和
三数之和 给定一个包含 n 个整数的数组 nums,判断 nums 中是否存在三个元素 a,b,c ,使得 a + b + c = 0 ?找出所有满足条件且不重复的三元组. 注意:答案中不可以包含重复 ...
- intellij idea maven配置及maven项目创建
1. 下载Maven 官方地址:http://maven.apache.org/download.cgi 解压并新建一个本地仓库文件夹 2.配置maven环境变量 3.配置配置本地仓库路径 4.配置阿 ...
- 简述AQS原理
这是一道面试题:简述AQS原理 AQS核心思想是,如果被请求的共享资源空闲,则将当前请求资源的线程设置为有效的工作线程,并且将共享资源设置为锁定状态.如果被请求的共享资源被占用,那么就需要一套线程阻塞 ...
- 关于XSS的一些知识点
安全套接层(SSL)无助于减少XSS攻击.当Web浏览器使用SSL的时候,在网络中传送的数据是经过加密的,但是因为XSS攻击是在客户机器上发生的,所以数据已经被解密了,这时,攻击者仍然能够利用XSS安 ...
- oozie的shell-action中加入hive脚本命令启动执行shell同时操作hive,抛异常Container killed on request. Exit code is 143 Container exited with a non-zero exit code 143
使用oozie来调度操作,用shell的action执行命令,其中shell里包含着hive -e 操作执行时,oozie窗口报 WARN ShellActionExecutor: - SERVER[ ...
- hadoop Datanode Uuid unassigned
在配置hadoop的hdfs的时候,要首先格式化,然后才能启动,但是格式化的方式有的是不对出现Initialization failed for Block pool <registering& ...
- javascript event对象操作
js代码: $(".leads_detail").click(function(e){ e = e || event; var t = e.target || e.srcEleme ...
- 王者荣耀交流协会--第3次Scrum会议
Scrum master:王玉玲 要求1:工作照片 要求2:时间跨度:2017年10月15号 6:00--6:24 共计24min要求3:地点:传媒西楼204,会议室要求4:立会内容:1.从昨日会 ...
- 作业三C++
作业心得 1.本次作业开始使用C++编写了(面向过程的C++,2333) 2.粗略学习了一下文件输入输出,和项目的创建等(在大佬眼里最基本的操作QAQ,然而我还是有点晕晕的,平时都是ctrl+n新建源 ...