bzoj2956: 模积和(数论)
先算出无限制的情况,再减去i==j的情况。
无限制的情况很好算,有限制的情况需要将式子拆开。
注意最后的地方要用平方和公式,模数+1是6的倍数,于是逆元就是(模数+1)/6
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#define MOD(x) ((x)>=mod?(x)-mod:(x))
using namespace std;
const int mod=,six=;
int n,m,sumn,summ,l1,r1,l2,r2,l,r;
void read(int &k)
{
int f=;k=;char c=getchar();
while(c<''||c>'')c=='-'&&(f=-),c=getchar();
while(c<=''&&c>='')k=k*+c-'',c=getchar();
k*=f;
}
int solve(int n,int m)
{
int sum=;
for(int i=;i<=n;i=r+)
{
l=m/(m/i+)+;r=m/(m/i);
if(r>=n)r=n;
sum=MOD(sum+(1ll*(m/i)*(r-l+)%mod*(l+r)%mod*((mod+)>>)%mod));
}
return sum;
}
int pfh(int n){return 1ll*n%mod*(n+)%mod*(*n+)%mod*six%mod;}
int main()
{
read(n);read(m);
sumn=(1ll*n*n-solve(n,n))%mod;summ=(1ll*m*m-solve(m,m))%mod;
int sum=1ll*min(n,m)*n%mod*m%mod;
for(int i=;i<=min(n,m);i=r+)
{
r=min(n/(n/i),m/(m/i));
if(r>min(n,m))r=min(n,m);
sum=MOD(sum+1ll*(n/i)*(m/i)%mod*MOD(pfh(r)+mod-pfh(i-))%mod);
}
sum=(sum+mod-(1ll*m*solve(min(n,m),n)%mod)+mod-(1ll*n*solve(min(n,m),m)%mod))%mod;
printf("%lld\n",MOD(1ll*sumn*summ%mod+mod-sum));
}
bzoj2956: 模积和(数论)的更多相关文章
- BZOJ2956: 模积和(数论分块)
题意 题目链接 Sol 啊啊这题好恶心啊,推的时候一堆细节qwq \(a \% i = a - \frac{a}{i} * i\) 把所有的都展开,直接分块.关键是那个\(i \not= j\)的地方 ...
- 【bzoj2956】模积和 数论
题目描述 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. 输入 第一行两个数n,m. 输出 一个整数表示答案mod 1994041 ...
- 【数论分块】bzoj2956: 模积和
数论分块并不精通……第一次调了一个多小时才搞到60pts:因为不会处理i==j的情况,只能枚举了…… Description $\sum_{i=1}^{n}\sum_{j=1 \land i \not ...
- ACM学习历程—BZOJ2956 模积和(数论)
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- BZOJ2956: 模积和——整除分块
题意 求 $\sum_{i=1}^n \sum_{j=1}^m (n \ mod \ i)*(m \ mod \ j)$($i \neq j$),$n,m \leq 10^9$答案对 $1994041 ...
- bzoj 2956: 模积和 ——数论
Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m. Output 一个整数表 ...
- 【BZOJ2956】模积和 分块
[BZOJ2956]模积和 Description 求∑∑((n mod i)*(m mod j))其中1<=i<=n,1<=j<=m,i≠j. Input 第一行两个数n,m ...
- P2260 [清华集训2012]模积和
P2260 [清华集训2012]模积和 整除分块+逆元 详细题解移步P2260题解板块 式子可以拆开分别求解,具体见题解 这里主要讲的是整除分块(数论分块)和mod不为素数时如何求逆元 整除分块:求Σ ...
随机推荐
- 第六章P2P技术及应用
第六章P2P技术及应用 P2P技术在我们日常生活中非常实用,例如我们常用的QQ.PPLive.BitTorrent就是基于P2P技术研发.下面将本章中的重点内容进行归纳. 文章中的Why表示产生的背景 ...
- CSP201312-3:最大的矩形
引言:CSP(http://www.cspro.org/lead/application/ccf/login.jsp)是由中国计算机学会(CCF)发起的"计算机职业资格认证"考试, ...
- Oracle创建表管理表
--创建图书表 create table books_lib ( book_id ) primary key, --unique¬ null book_name ) not null ) ...
- MapPartition和Map的区别
在Spark中有map和mapPartitions算子,处理数据上,有一些区别 主要区别: map是对rdd中的每一个元素进行操作: mapPartitions则是对rdd中的每个分区的迭代器进行操作 ...
- Kubernetes-----Endpoints
Endpoints是实现实际服务的端点集合. Kubernetes在创建Service时,根据Service的标签选择器(Label Selector)来查找Pod,据此创建与Service同名的En ...
- “Hello World!“”团队第五周召开的第二次会议
今天是我们团队“Hello World!”团队第五周召开的第二次会议.也祝大家双十一快乐~~博客内容: 一.会议时间 二.会议地点 三.会议成员 四.会议内容 五.todo list 六.会议照片 七 ...
- 团队项目NABCD
团队成员及项目简介 团队名:伍陸柒 团队成员: 李 俏(20132912 信1301-2) 郝 颖(20132919 信1301-2)http://www.cnblogs.com/haoying1 ...
- CS小分队第二阶段冲刺站立会议(5月28日)
昨日成果:昨天对我们的软件的主界面进行了思考,考虑到许多人建议我们团队添加可以自主增加软件快捷键的功能,我对这一想法的可行性和项目总体策划进行评估分析后,决定正式实施:已经完成从电脑上添加文件在我们的 ...
- lintcode-425-电话号码的字母组合
425-电话号码的字母组合 Given a digit string excluded 01, return all possible letter combinations that the num ...
- sleep(),wait(),yield(),notify()
sleep(),wait(),yield() 的区别 sleep方法和yield方法是Thread类的方法,wait方法是Object的方法. sleep 方法使当前运行中的线程睡眼一段时间,进入不可 ...