BZOJ3743 COCI2015Kamp(树形dp)
设f[i]为由i开始遍历完子树内所要求的点的最短时间,g[i]为由i开始遍历完子树内所要求的点最后回到i的最短时间。则g[i]=Σ(g[j]+2),f[i]=min{g[i]-g[j]+f[j]-1}。
然后由父亲答案还原。因为上面的dp用到了max似乎不太好搞,于是记录一下最大值是用了哪棵子树以及次大值就行了。
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
#define N 500010
#define ll long long
int n,m,a[N],id[N],p[N],size[N],t=;
ll f[N],f2[N],g[N];
bool flag[N];
struct data{int to,nxt,len;
}edge[N<<];
void addedge(int x,int y,int z){t++;edge[t].to=y,edge[t].nxt=p[x],edge[t].len=z,p[x]=t;}
inline ll noback(int x,int y,int z){return g[x]-g[y]+f[y]-z;}
void dfs(int k,int from)
{
size[k]=flag[k];
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
size[k]+=size[edge[i].to];
if (size[edge[i].to]) g[k]+=g[edge[i].to]+(edge[i].len<<);
}
f[k]=f2[k]=g[k];
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from&&size[edge[i].to])
{
ll x=noback(k,edge[i].to,edge[i].len);
if (x<f[k]) f2[k]=f[k],f[k]=x,id[k]=edge[i].to;
else if (x<f2[k]) f2[k]=x;
}
}
void getans(int k,int from)
{
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
if (size[edge[i].to])
{
if (size[edge[i].to]<m)
{
ll x=f[k],y=g[k];
g[k]-=g[edge[i].to]+(edge[i].len<<);
if (id[k]==edge[i].to) f[k]=f2[k]-(g[edge[i].to]+(edge[i].len<<));
else f[k]=f[k]-(g[edge[i].to]+(edge[i].len<<));
g[edge[i].to]=y;
if (noback(edge[i].to,k,edge[i].len)<f[edge[i].to]+g[k]+(edge[i].len<<))
f2[edge[i].to]=f[edge[i].to]+g[k]+(edge[i].len<<),id[edge[i].to]=k,f[edge[i].to]=noback(edge[i].to,k,edge[i].len);
else f[edge[i].to]+=g[k]+(edge[i].len<<),f2[edge[i].to]=min(f2[edge[i].to]+g[k]+(edge[i].len<<),noback(edge[i].to,k,edge[i].len));
f[k]=x,g[k]=y;
}
}
else g[edge[i].to]=g[k]+(edge[i].len<<),f[edge[i].to]=f[k]+edge[i].len;
getans(edge[i].to,k);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj3743.in","r",stdin);
freopen("bzoj3743.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<n;i++)
{
int x=read(),y=read(),z=read();
addedge(x,y,z),addedge(y,x,z);
}
for (int i=;i<=m;i++) flag[read()]=;
dfs(,);
getans(,);
for (int i=;i<=n;i++) printf(LL,f[i]);
return ;
}
BZOJ3743 COCI2015Kamp(树形dp)的更多相关文章
- 【BZOJ3743】[Coci2015]Kamp 树形DP
[BZOJ3743][Coci2015]Kamp Description 一颗树n个点,n-1条边,经过每条边都要花费一定的时间,任意两个点都是联通的. 有K个人(分布在K个不同的点)要集中到一个点举 ...
- 树形dp专题总结
树形dp专题总结 大力dp的练习与晋升 原题均可以在网址上找到 技巧总结 1.换根大法 2.状态定义应只考虑考虑影响的关系 3.数据结构与dp的合理结合(T11) 4.抽直径解决求最长链的许多类问题( ...
- poj3417 LCA + 树形dp
Network Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 4478 Accepted: 1292 Descripti ...
- COGS 2532. [HZOI 2016]树之美 树形dp
可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...
- 【BZOJ-4726】Sabota? 树形DP
4726: [POI2017]Sabota? Time Limit: 20 Sec Memory Limit: 128 MBSec Special JudgeSubmit: 128 Solved ...
- 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)
题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...
- 树形DP
切题ing!!!!! HDU 2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...
- BZOJ 2286 消耗战 (虚树+树形DP)
给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...
- POJ2342 树形dp
原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...
- hdu1561 The more, The Better (树形dp+背包)
题目链接:http://acm.split.hdu.edu.cn/showproblem.php?pid=1561 思路:树形dp+01背包 //看注释可以懂 用vector建树更简单. 代码: #i ...
随机推荐
- c++ 全局变量
一.全局变量 声明 全局变量的定义和一般变量定义相同,不同的就是它的位置.一般会放在所有共享函数的前边. 作用 在函数间共享数据. 二.全局变量的运用 三.作业: 写出代码运行结果: ; //0 in ...
- 【转载】C/C++杂记:运行时类型识别(RTTI)与动态类型转换原理
原文:C/C++杂记:运行时类型识别(RTTI)与动态类型转换原理 运行时类型识别(RTTI)的引入有三个作用: 配合typeid操作符的实现: 实现异常处理中catch的匹配过程: 实现动态类型转换 ...
- day 3 私有属性,私有方法,__del__
1.隐藏对象的属性 如果有一个对象,当需要对其进行修改属性时,有2种方法 对象名.属性名 = 数据 ---->直接修改 对象名.方法名() ---->间接修改 1)版本1:直接修改 对象的 ...
- [POJ3041]Asteroids
Asteroids 好久没打过网络流相关的题了...... 题意:一个矩阵n×n,有m个东西,一次去掉一整行或一整列,问最少次数. 题解:匈牙利. 把每行变成一个点(X集合),每列变成一个点(Y集合) ...
- Android开发笔记——视频录制播放常见问题
本文分享自己在视频录制播放过程中遇到的一些问题,主要包括: 视频录制流程 视频预览及SurfaceHolder 视频清晰度及文件大小 视频文件旋转 一.视频录制流程 以微信为例,其录制触发为按下(住) ...
- Python中的矩阵操作
Numpy 通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包. NumPy 是一个非常优秀的提供矩阵操作的包.N ...
- 在tomcat5中发布项目时,用IP地址+端口不能访问项目,而用localhost加端口时可以访问成功
最近在开发项目中,遇到的一个问题是: 在 tomcat中发布一个web项目,但是发布成功后,只能用http://localhost:8080/fm访问项目,不能用 http://127.0.0.1:8 ...
- Jmeter如何做接口测试
最近在学习Jmeter,记录下来,与大家分享. 1. 打开Jmeter,我用的是5.0版本,打开后如下图所示: 2. 右键测试计划,添加 - 线程(用户) - 线程组,如下如图所示: 3. 右键线程组 ...
- 转发——谷歌云官方:一小时掌握深度学习和 TensorFlow
转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==& ...
- 【ZABBIX】SNMPtrap实现主动监控的原理与安装配置
工欲善其事,必先利其器.作为一款强大的开源软件,Zabbix号称“Monitor Everything”,其所依赖的,很大程度上便是SNMP的数据采集支持.SNMP 协议是用来管理设备的协议,目前SN ...