P4177 [CEOI2008]order
答案等于总工作价值减去最小失去的价值
考虑构建最小割模型
在 $S$割 的点表示选,在 $T$割 的点表示不选
对于机器(编号从 $n+1$ 到 $n+m$) $n+i$,连边 $(n+i,T,cost)$ 表示选的代价
即如果此边满流表示此机器在 $S$割,表示选了,代价就是 $cost$
对于工作 $i$,连边 $(S,i,money)$ 如果此边满流表示此工作在 $T$割,失去的价值为 $money$,表示不选的代价
对于工作 $i$ 需要工序 $n+j$,连边 $(i,n+j,once)$ 表示如果选择工作 $i$(在 $S$割),不选择机器 $j$(在 $T$割),产生的代价。
因为每个机器和工作都要确定选或者不选,所以图一定要分出 $S$割 和 $T$割
那么答案就是总工作价值减最小割
如果你 $TLE$ 或者 $RE$ 了,请注意边数要开大...
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
#include<queue>
using namespace std;
typedef long long ll;
inline int read()
{
int x=,f=; char ch=getchar();
while(ch<''||ch>'') { if(ch=='-') f=-; ch=getchar(); }
while(ch>=''&&ch<='') { x=(x<<)+(x<<)+(ch^); ch=getchar(); }
return x*f;
}
const int N=1e5+,M=4e6+,INF=1e9+;
int fir[N],from[M],to[M],val[M],cntt=;
inline void add(int a,int b,int c)
{
from[++cntt]=fir[a]; fir[a]=cntt;
to[cntt]=b; val[cntt]=c;
from[++cntt]=fir[b]; fir[b]=cntt;
to[cntt]=a; val[cntt]=;
}
int dep[N],Fir[N],S,T;
queue <int> q;
bool BFS()
{
for(int i=S;i<=T;i++) Fir[i]=fir[i],dep[i]=;
q.push(S); dep[S]=; int x;
while(!q.empty())
{
x=q.front(); q.pop();
for(int i=fir[x];i;i=from[i])
{
int &v=to[i]; if(dep[v]||!val[i]) continue;
dep[v]=dep[x]+; q.push(v);
}
}
return dep[T]>;
}
int DFS(int x,int mxf)
{
if(x==T||!mxf) return mxf;
int fl=,res;
for(int &i=Fir[x];i;i=from[i])
{
int &v=to[i]; if(dep[v]!=dep[x]+||!val[i]) continue;
if( res=DFS(v,min(mxf,val[i])) )
{
mxf-=res; fl+=res;
val[i]-=res; val[i^]+=res;
if(!mxf) break;
}
}
return fl;
}
inline int Dinic() { int res=; while(BFS()) res+=DFS(S,INF); return res; } int n,m,ans;
int main()
{
n=read(),m=read();
S=,T=n+m+;
int v,t,a,c;
for(int i=;i<=n;i++)
{
v=read(),t=read(); add(S,i,v); ans+=v;
for(int j=;j<=t;j++)
{
a=read(),c=read();
add(i,n+a,c);
}
}
for(int i=;i<=m;i++) add(n+i,T,read());
printf("%d",ans-Dinic());
return ;
}
P4177 [CEOI2008]order的更多相关文章
- P4177 [CEOI2008]order(网络流)最大权闭合子图
P4177 [CEOI2008]order 如果不能租机器,这就是最大权闭合子图的题: 给定每个点的$val$,并给出限制条件:如果取点$x$,那么必须取$y_1,y_2,y_3......$,满足$ ...
- P4177 [CEOI2008]order 网络流,最小割,最大权闭合子图
题目链接 \(Click\) \(Here\) 如果没有租用机器就是一个裸的最大权闭合子图.现在有了租用机器应该怎么办呢? 单独拆点是不行的,因为会和直接买下的情况脱离关系,租借是和连边直接相关的,那 ...
- P4177 [CEOI2008]order 最小割
\(\color{#0066ff}{ 题目描述 }\) 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给 ...
- 洛谷$P4177\ [CEOI2008]\ order$ 网络流
正解:网络流 解题报告: 传送门$QwQ$ 开始看感$jio$长得好像和太空飞行计划差不多的,,,然后仔细康康发现还有租操作,,, 按一般的套路碰到这样儿的一般就先按非特殊化的建图然后考虑怎么实现这个 ...
- BZOJ 1391: [Ceoi2008]order [最小割]
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1509 Solved: 460[Submit][Statu ...
- Bzoj 1391: [Ceoi2008]order 网络流,最大权闭合图
1391: [Ceoi2008]order Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1105 Solved: 331[Submit][Statu ...
- BZOJ 1391 [Ceoi2008]order
1391: [Ceoi2008]order Description 有N个工作,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完 ...
- [CEOI2008]order --- 最小割
[CEOI2008]order 题目描述: 有N个任务,M种机器,每种机器你可以租或者买过来. 每个工作包括若干道工序,每道工序需要某种机器来完成,你可以通过购买或租用机器来完成. 现在给出这些参数, ...
- [Luogu4177][CEOI2008]order
luogu sol 这题有点像网络流24题里面的太空飞行计划啊. 最大收益=总收益-最小损失. 先令\(ans=\sum\)任务收益. 源点向每个任务连容量为收益的边. 每个机器向汇点连容量为购买费用 ...
随机推荐
- Spring MVC的handlermapping之请求分发如何找到正确的Handler(BeanNameUrlHandlerMapping,SimpleUrlHandlerMapping)
本文讲的是Spring MVC如何找到正确的handler, 前面请求具体怎么进入到下面的方法,不再细说. 大概就是Spring mvc通过servlet拦截请求,实现doService方法,然后进入 ...
- [GO]go使用etcd
package main import ( "go.etcd.io/etcd/clientv3" //笔者在使用clientv3的时间曾经使用过github.com/coreos/ ...
- javascript编码规范[原创]
一些命名规范书或js书命名规范章节,喜欢将命名规范跟语法混在一块例如: 1.使用“var”定义.初始化变量防止产生全局变量,多变量一块定义使用“,”(本身这种方式就很有争议). 2.结尾必加“;”防止 ...
- C# Http请求接口数据的两种方式Get and Post
面向接口编程是一种设计思想,无论用什么语言都少不了面向接口开发思想,在软件开发过程中,常常要调用接口,接下来就是介绍C#调用其它开发商提供的接口进行获取数据,http接口方式获取接口数据. Get请求 ...
- Long-distance navigation and magnetoreception in migratory animals(迁徙动物中的长距离导航和磁感应)
摘要:For centuries, humans have been fascinated by how migratory animals find their way over thousands ...
- java.util.concurrent.locks.LockSupport (讲得比较细)
转自: https://my.oschina.net/readjava/blog/282882 摘要: 要学习JAVA中是如何实现线程间的锁,就得从LockSupport这个类先说起,因为这个 ...
- ZOJ3770Ranking System 2017-04-14 12:42 52人阅读 评论(0) 收藏
Ranking System Time Limit: 2 Seconds Memory Limit: 65536 KB Few weeks ago, a famous software co ...
- 注册一个GitHub用户的过程
今天,我注册了一个GitHub用户.一开始,不知道GitHub是什么,还以为叫什么"getup",心里还想着什么网站名字这么奇怪,后来在舍友的帮助之下知道了原来是叫GitHub.下 ...
- SQL Server Job
1. SQL Server Job创建:(SQL Server 代理 - 作业)鼠标右键.新建作业. 2.[常规]选项:定义作业名称.和说明信息. 3:[步骤]选项:新建步骤 4:定义步骤名称.设置对 ...
- [uwp]MVVM之MVVMLight,一个登录注销过程的简单模拟
之前学MVVM,从ViewModelBase,RelayCommand都是自己瞎写,许多地方处理的不好,接触到MVVMLigth后,就感觉省事多了. 那么久我现在学习MVVMLight的收获,简单完成 ...