读 CSI讲义 费马小定理
费马小定理
最近在上计算机安全学选修课.. 读老师博客..现在当是写阅读笔记吧.
这里贴出老师的简书
建议先看看链接先..毕竟我这些东西只是搞笑一下的..
遵循一下这个原则…
- 观察
- 找规律
- 求证
首先是一段python代码,其实下面的才能直接copy后直接跑(我没学过)
# n是某个正整数
n = 11;
for i in range(1, n): # i循环从1到n-1
for j in range(1, n): # j循环从1到n-1
print ((i * j) % n),# 输出 (i*j) mod n
print("\n")
发现打印的结果每一行都是 [1, n-1]的排列, 但是当n == 某个合数时规律消失
却也并非完全消失, 与n互素的行规律仍在, 后话
知道其实i, j是[1, n-1]的循环,打印的就是(ij) mod n
根据老师文章所提示,依式子以及结果,得到2条式子
i1 mod n, i2 mod n, …, i(n-1) mod n [1]
1, 2, 3, 4, …, n-1 [2]
式子[1]与式子[2]中元素各自连乘,得另外两个相等的式子
i^(n-1) (n-1)! mod n [3]
(n-1)! mod n [4]
关键在于知道[3] == [4]后, [6]式如何得来, 即
i^(n-1) (n-1)! ≡ (n-1)! mod n [5]
推导出
i^(n-1) ≡ 1 mod n [6]
首先给出一个定义
设m是大于1的正整数,a、b是整数,如果(a-b)|m,则称a与b关于模m同余,记作a≡b(mod m),读作a与b对模m同余
我们可以把上面的两个式子简化成
a c ≡ b c mod m [7],
现在证明, 当 c 与 m互素时, 上式可以化简成
a ≡ b mod m
∵ a * c ≡ b * c mod m
∴ m | (a * c - b * c)
∴ m | (a - b) * c
∵ m 与 c 互素
∴ m | (a - b) // 整除的性质
∴ a ≡ b mod m
上面的证明并不严谨..只是一个思路..(有问题的话恳请指正)
说了这么多..谁和你说 c 和 m 互素了?? 回到[6]式
就是问 (n-1)! 为什么和 n是互素的?
首先我们知道发现规律的n,都是素数(比如代码用的11),..而一个素数与 [1, n-1]的整数都是互素的
就是说
∀i ∈ [1, n-1], 都满足 i ≡ 1 mod n
那么根据同余关系的性质
同余式相乘 若a≡b (mod m),c≡d(mod m),则ac≡bd (mod m)
可以推得,所有的这些与n互素的元素之积, 亦即(n-1)! ≡ 1 mod n成立
根据[5][6],我们能总结出,对于素数n,取任意大于1小于n-1的整数(此条件并不必要,为什么?),我们有,i^(n-1) ≡ 1 mod n
但是依据上面的证明,显然但凡c和m互素,皆可得到式6。
上述亦即费马小定理
假如p是质数,且gcd(a,p)=1,那么 a^(p-1)≡1(mod p)
读 CSI讲义 费马小定理的更多相关文章
- BZOJ 3240([Noi2013]矩阵游戏-费马小定理【矩阵推论】-%*s-快速读入)
3240: [Noi2013]矩阵游戏 Time Limit: 10 Sec Memory Limit: 256 MB Submit: 123 Solved: 73 [ Submit][ St ...
- 数学【p2613】 【模板】有理数取余(费马小定理)
题目描述 给出一个有理数 c=a/b ,求 c mod 19260817的值. 说明 对于所有数据, 0≤a,b≤10^10001 分析: 一看题 这么短 哇简单!况且19260817还是个素数!(美 ...
- hdu 4704 Sum (整数和分解+快速幂+费马小定理降幂)
题意: 给n(1<n<),求(s1+s2+s3+...+sn)mod(1e9+7).其中si表示n由i个数相加而成的种数,如n=4,则s1=1,s2=3. ...
- nyoj1000_快速幂_费马小定理
又见斐波那契数列 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 斐波那契数列大家应该很熟悉了吧.下面给大家引入一种新的斐波那契数列:M斐波那契数列. M斐波那契数列 ...
- poj 3734 Blocks 快速幂+费马小定理+组合数学
题目链接 题意:有一排砖,可以染红蓝绿黄四种不同的颜色,要求红和绿两种颜色砖的个数都是偶数,问一共有多少种方案,结果对10007取余. 题解:刚看这道题第一感觉是组合数学,正向推了一会还没等推出来队友 ...
- 数论初步(费马小定理) - Happy 2004
Description Consider a positive integer X,and let S be the sum of all positive integer divisors of 2 ...
- 【BZOJ1951】【SDOI2010】古代猪文 Lucas定理、中国剩余定理、exgcd、费马小定理
Description “在那山的那边海的那边有一群小肥猪.他们活泼又聪明,他们调皮又灵敏.他们自由自在生活在那绿色的大草坪,他们善良勇敢相互都关心……” ——选自猪王国民歌 很久很久以前,在山的那边 ...
- 数论 --- 费马小定理 + 快速幂 HDU 4704 Sum
Sum Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=4704 Mean: 给定一个大整数N,求1到N中每个数的因式分解个数的 ...
- HDU 5667 Sequence 矩阵快速幂+费马小定理
题目不难懂.式子是一个递推式,并且不难发现f[n]都是a的整数次幂.(f[1]=a0;f[2]=ab;f[3]=ab*f[2]c*f[1]...) 我们先只看指数部分,设h[n]. 则 h[1]=0; ...
随机推荐
- lazy初始化和线程安全的单例模式
1.双检锁/双重校验锁(DCL,即 double-checked locking) JDK 版本:JDK1.5 起 是否 Lazy 初始化:是 是否多线程安全:是 实现难度:较复杂 描述:这种方式采用 ...
- Django 中文文档地址
http://djangobook.py3k.cn/2.0/ MK一下
- throws 与 throw
摘录自:http://blog.csdn.net/ronawilliam/article/details/3299676 void doA() throws Exception1, Exception ...
- vue+vuex+axios从后台获取数据存入vuex,组件之间共享数据
在vue项目中组件间相互传值或者后台获取的数据需要供多个组件使用的情况很多的话,有必要考虑引入vuex来管理这些凌乱的状态,今天这边博文用来记录这一整个的过程,后台api接口是使用webpack-se ...
- WCF中的AddressHeader作用
客户端发送请求给服务端,服务端根据请求消息把消息转发给对应的终结点.这里面有个消息筛选机制,如果请求消息中带有地址报头相关信息,则会用地址报头匹配当前的所有终结点.所以默认情况下客户端和服务端的地址报 ...
- Node.js创建第一个应用
在我们创建 Node.js 第一个 "Hello, World!" 应用前,让我们先了解下 Node.js 应用是由哪几部分组成的: 引入 required 模块:我们可以使用 r ...
- RabbitMQ---2、介绍
1.背景 RabbitMQ是一个由erlang开发的AMQP(Advanved Message Queue)的开源实现. 2.应用场景 2.1异步处理 场景说明:用户注册后,需要发注册邮件和注册短信, ...
- Java - 慎用tagged class
作者的原标题是<Prefer class hierarchies to tagged classes>,即用类层次优于tagged class. 我不知道有没有tagged class这么 ...
- wpf 窗口最小化后,触发某事件弹出最小化窗口并置顶
//如果窗口最小化了弹出并置顶----事件触发调用 ShowWindowAsync(new System.Windows.Interop.WindowInteropHelper(CommonHelpe ...
- Java中名词的解释
在上一篇中说到了Java的四大特性,里面出现了很多名次,包括以后学习Java中也会出现很多常用到的名次,对初学者来说可能不知道是什么意思,或者是对这些刺耳的理解不是特别透彻,这里我就我自己的理解来解释 ...