hdu 4773 Problem of Apollonius
莫名其妙就AC了……
圆的反演……
神马是反演?
快去恶补奥数……
#include<iostream>
#include<map>
#include<string>
#include<cstring>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
const double pi=acos(-1.0);
const double eps=1e-9;
int dcmp(double x){return fabs(x)<eps?0:x<0?-1:1;}
struct dot
{
double x,y;
dot(){}
dot(double a,double b){x=a;y=b;}
dot operator +(dot a){return dot(x+a.x,y+a.y);}
dot operator -(dot a){return dot(x-a.x,y-a.y);}
dot operator *(double a){return dot(x*a,y*a);}
double operator *(dot a){return x*a.y-y*a.x;}
dot operator /(double a){return dot(x/a,y/a);}
double operator /(dot a){return x*a.x+y*a.y;}
bool operator ==(dot a){return x==a.x&&y==a.y;}
void in(){scanf("%lf%lf",&x,&y);}
void out(){printf("%f %f\n",x,y);}
dot norv(){return dot(-y,x);}
dot univ(){double a=mod();return dot(x/a,y/a);}
dot ro(double a){return dot(x*cos(a)-y*sin(a),x*sin(a)+y*cos(a));}
double mod(){return sqrt(x*x+y*y);}
double dis(dot a){return sqrt(pow(x-a.x,2)+pow(y-a.y,2));}
};
struct cir
{
dot o;
double r;
cir(){}
cir(dot a,double b){o=a;r=b;}
void in(){o.in();scanf("%lf",&r);}
};
struct seg
{
dot s,e;
seg(){}
seg(dot a,dot b){s=a;e=b;}
};
cir sivs(dot a,dot b,dot c)
{
dot dir,a1,b1;
double t,d,w;
t=fabs((b-a)*(c-a));
d=a.dis(b);
t/=d;
w=0.5/t;
dir=(b-a).norv();
a1=c+dir*(w/d);
b1=c-dir*(w/d);
if(fabs((b-a)*(a1-a))<fabs((b-a)*(b1-a)))
return cir(a1,w);
else
return cir(b1,w);
}
cir civs(cir a,dot b)
{
cir c;
double t,x,y,s;
t=a.o.dis(b);
x=1.0/(t-a.r);
y=1.0/(t+a.r);
c.r=(x-y)/2.0;
s=(x+y)/2.0;
c.o=b+(a.o-b)*(s/t);
return c;
}
seg se[2];
void comseg(dot a,double r1,dot b,double r2)
{
double ang;
ang=acos((r1-r2)/a.dis(b));
se[0].s=a+(b-a).ro(ang).univ()*r1;
se[1].s=a+(b-a).ro(-ang).univ()*r1;
ang=pi-ang;
se[0].e=b+(a-b).ro(-ang).univ()*r2;
se[1].e=b+(a-b).ro(ang).univ()*r2;
}
int main()
{
int T,cnt,i;
cir a,b,a1,b1,ans[2];
dot c;
scanf("%d",&T);
while(T--)
{
a.in();
b.in();
c.in();
a1=civs(a,c);
b1=civs(b,c);
comseg(a1.o,a1.r,b1.o,b1.r);
cnt=0;
for(i=0;i<2;i++)
if(dcmp((a1.o-se[i].s)*(se[i].e-se[i].s))==dcmp((c-se[i].s)*(se[i].e-se[i].s)))
if(dcmp((b1.o-se[i].s)*(se[i].e-se[i].s))==dcmp((c-se[i].s)*(se[i].e-se[i].s)))
ans[cnt++]=sivs(se[i].s,se[i].e,c);
printf("%d\n",cnt);
for(i=0;i<cnt;i++)
printf("%.8f %.8f %.8f\n",ans[i].o.x,ans[i].o.y,ans[i].r);
}
}
Problem of Apollonius
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 551 Accepted Submission(s): 124
Special Judge
circles can be internally or externally tangent to each other, thus Apollonius's problem generically have eight solutions.
Now considering a simplified case of Apollonius's problem: constructing circles that are externally tangent to two given circles, and touches a given point(the given point must be on the circle which you find, can't be inside the circle). In addition, two
given circles have no common points, and neither of them are contained by the other, and the given point is also located strictly outside the given circles. You should be thankful that modern mathematics provides you with plenty of useful tools other than
euclidean geometry that help you a lot in this problem.
Each ease has eight positive integers x1, y1, r1, x2, y2, r2, x3, y3 in a single line, stating two circles whose centres are (x1, y1), (x2, y2) and radius are r1 and r2 respectively, and a point located at (x3, y3). All integers are no larger than one hundred.
Then output S lines, each line contains three float numbers x, y and r, meaning that a circle, whose center is (x, y) and radius is r, is a solution to this case. If there are multiple solutions (S > 1), outputing them in any order is OK. Your answer
will be accepted if your absolute error for each number is no more than 10-4.
1
12 10 1 8 10 1 10 10
2
10.00000000 8.50000000 1.50000000
10.00000000 11.50000000 1.50000000HintThis problem is special judged.
hdu 4773 Problem of Apollonius的更多相关文章
- 【HDU】4773 Problem of Apollonius
题意 给定相离的两个圆(圆心坐标以及半径)以及圆外的一个定点\(P\),求出过点\(P\)的且与已知的两个圆外切的所有圆(输出总数+圆心.半径). 分析 如果强行解方程,反正我是不会. 本题用到新姿势 ...
- 【 HDU4773 】Problem of Apollonius (圆的反演)
BUPT2017 wintertraining(15) #5G HDU - 4773 - 2013 Asia Hangzhou Regional Contest problem D 题意 给定两个相离 ...
- HDU 6343.Problem L. Graph Theory Homework-数学 (2018 Multi-University Training Contest 4 1012)
6343.Problem L. Graph Theory Homework 官方题解: 一篇写的很好的博客: HDU 6343 - Problem L. Graph Theory Homework - ...
- hdu String Problem(最小表示法入门题)
hdu 3374 String Problem 最小表示法 view code#include <iostream> #include <cstdio> #include &l ...
- HDU 6343 - Problem L. Graph Theory Homework - [(伪装成图论题的)简单数学题]
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6343 Time Limit: 2000/1000 MS (Java/Others) Memory Li ...
- HDU 5687 Problem C 【字典树删除】
传..传送:http://acm.hdu.edu.cn/showproblem.php?pid=5687 Problem C Time Limit: 2000/1000 MS (Java/Others ...
- HDU 6342.Problem K. Expression in Memories-模拟-巴科斯范式填充 (2018 Multi-University Training Contest 4 1011)
6342.Problem K. Expression in Memories 这个题就是把?变成其他的使得多项式成立并且没有前导零 官方题解: 没意思,好想咸鱼,直接贴一篇别人的博客,写的很好,比我的 ...
- HDU 6336.Problem E. Matrix from Arrays-子矩阵求和+规律+二维前缀和 (2018 Multi-University Training Contest 4 1005)
6336.Problem E. Matrix from Arrays 不想解释了,直接官方题解: 队友写了博客,我是水的他的代码 ------>HDU 6336 子矩阵求和 至于为什么是4倍的, ...
- HDU 5687 Problem C(Trie+坑)
Problem C Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) Tota ...
随机推荐
- Js处理json数据
js中处理由ajax调用返回的json数据问题,可以通过使用JSON.parse方法将json字符串转化成javascript 对象.通过对象访问属性值. JSON.parse 只限于高版本的浏览器. ...
- UML 类图的关系
1. 关联关系 1.1 单向关联 . public class ClassA { private ClassB bVar; } public class ClassB { //... } 1.2 ...
- csu 10月 月赛 H 题 A Very Hard Problem
Description CX老湿经常被人黑,被黑得多了,自己也就麻木了.于是经常听到有人黑他,他都会深情地说一句:禽兽啊! 一天CX老湿突发奇想,给大家出了一个难题,并且声称谁能够准确地回答出问题才能 ...
- python代码优化技巧
转自:http://www.douban.com/group/topic/31478102/ 这个资料库还有些不错的好文章: http://www.ibm.com/developerworks/cn/ ...
- [转贴]关于C++的抽象的一点新认识
http://my.oschina.net/fzyz999/blog/138491 关于本文 本文是笔者在阅读<C++沉思录>第0章——序幕后的一点想法,可以算作是笔记也可以算作是读后感. ...
- Perl,Python,Ruby,Javascript 四种脚本语言比较
Perl 为了选择一个合适的脚本语言学习,今天查了不少有关Perl,Python,Ruby,Javascript的东西,可是发现各大阵营的人都在吹捧自己喜欢的语言,不过最没有争议的应该是Javascr ...
- java学习之创建线程方法二
我们上一节当中讲到了创建线程的第一种方法,就是继承Thread类,覆写Thread当中的run方法,然后创建子类对象,之后调用对象的start方法启动线程.但是这种方法有一个缺陷,因为我们知道在jav ...
- Javascript自动换图片
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...
- XUTils框架的学习(三)
前面两章说了xutils框架的引入和注解模块的使用和数据库模块的使用,想了解的朋友可以去看看. 前面在说数据库模块的操作的时候是手动创建数据库并保存在asset文件夹里面,再通过I/O将数据库写进应用 ...
- (转载)php获取form表单中name相同的表单项
(转载)http://hi.baidu.com/ruhyxowwzhbqszq/item/5fd9c8b9b594db47ba0e12a9 比如下面的表单: /*form.php*/ <form ...