RDD的容错机制  

  RDD实现了基于Lineage的容错机制。RDD的转换关系,构成了compute chain,可以把这个compute chain认为是RDD之间演化的Lineage。在部分计算结果丢失时,只需要根据这个Lineage重算即可。
  图1中,假如RDD2所在的计算作业先计算的话,那么计算完成后RDD1的结果就会被缓存起来。缓存起来的结果会被后续的计算使用。图中的示意是说RDD1的Partition2缓存丢失。如果现在计算RDD3所在的作业,那么它所依赖的Partition0、1、3和4的缓存都是可以使用的,无须再次计算。但是Partition2由于缓存丢失,需要从头开始计算,Spark会从RDD0的Partition2开始,重新开始计算。
  内部实现上,DAG被Spark划分为不同的Stage,Stage之间的依赖关系可以认为就是Lineage。关于DAG的划分可以参阅第4章。
  提到Lineage的容错机制,不得不提Tachyon。Tachyon包含两个维度的容错,一个是Tachyon集群的元数据的容错,它采用了类似于HDFS的Name Node的元数据容错机制,即将元数据保存到一个Image文件,并且保存了元数据变化的编辑日志(EditLog)。另外一个是Tachyon保存的数据的容错机制,这个机制类似于RDD的Lineage,Tachyon会保留生成文件数据的Lineage,在数据丢失时会通过这个Lineage来恢复数据。如果是Spark的数据,那么在数据丢失时Tachyon会启动Spark的Job来重算这部分内容。如果是Hadoop产生的数据,那么重新启动相应的Map Reduce Job就可以。现在Tachyon的容错机制的实现还处于开发阶段,并不推荐将这个机制应用于生产环境。不过,这并不影响Spark使用Tachyon。如果Spark保存到Tachyon的部分数据丢失,那么Spark会根据自有的容错机制来重算这部分数据。

                     

                          图1  RDD的部分缓存丢失的逻辑图

Spark RDD概念学习系列之RDD的容错机制(十七)的更多相关文章

  1. Spark RDD概念学习系列之RDD的缓存(八)

      RDD的缓存 RDD的缓存和RDD的checkpoint的区别 缓存是在计算结束后,直接将计算结果通过用户定义的存储级别(存储级别定义了缓存存储的介质,现在支持内存.本地文件系统和Tachyon) ...

  2. Spark RDD概念学习系列之RDD的缺点(二)

        RDD的缺点? RDD是Spark最基本也是最根本的数据抽象,它具备像MapReduce等数据流模型的容错性,并且允许开发人员在大型集群上执行基于内存的计算. 为了有效地实现容错,(详细见ht ...

  3. Spark RDD概念学习系列之RDD的转换(十)

    RDD的转换 Spark会根据用户提交的计算逻辑中的RDD的转换和动作来生成RDD之间的依赖关系,同时这个计算链也就生成了逻辑上的DAG.接下来以“Word Count”为例,详细描述这个DAG生成的 ...

  4. Spark RDD概念学习系列之RDD的checkpoint(九)

     RDD的检查点 首先,要清楚.为什么spark要引入检查点机制?引入RDD的检查点?  答:如果缓存丢失了,则需要重新计算.如果计算特别复杂或者计算耗时特别多,那么缓存丢失对于整个Job的影响是不容 ...

  5. Spark RDD概念学习系列之RDD的操作(七)

    RDD的操作 RDD支持两种操作:转换和动作. 1)转换,即从现有的数据集创建一个新的数据集. 2)动作,即在数据集上进行计算后,返回一个值给Driver程序. 例如,map就是一种转换,它将数据集每 ...

  6. Spark RDD概念学习系列之RDD是什么?(四)

       RDD是什么? 通俗地理解,RDD可以被抽象地理解为一个大的数组(Array),但是这个数组是分布在集群上的.详细见  Spark的数据存储 Spark的核心数据模型是RDD,但RDD是个抽象类 ...

  7. Spark RDD概念学习系列之RDD的依赖关系(宽依赖和窄依赖)(三)

    RDD的依赖关系?   RDD和它依赖的parent RDD(s)的关系有两种不同的类型,即窄依赖(narrow dependency)和宽依赖(wide dependency). 1)窄依赖指的是每 ...

  8. Spark RDD概念学习系列之rdd的依赖关系彻底解密(十九)

    本期内容: 1.RDD依赖关系的本质内幕 2.依赖关系下的数据流视图 3.经典的RDD依赖关系解析 4.RDD依赖关系源码内幕 1.RDD依赖关系的本质内幕 由于RDD是粗粒度的操作数据集,每个Tra ...

  9. Spark RDD概念学习系列之RDD与DSM的异同分析(十三)

    RDD是一种分布式的内存抽象,下表列出了RDD与分布式共享内存(Distributed Shared Memory,DSM)的对比. 在DSM系统[1]中,应用可以向全局地址空间的任意位置进行读写操作 ...

随机推荐

  1. HTML5画布实现方法:

    我们可以在HTML中使用属性width和height来定义Canvas.但是实现Canvas的相关功能主要还依赖于Javascript实现,即HTML5 Canvas API.我们使用javascri ...

  2. NPOI简介

    NPOI 是 POI 项目的 .NET 版本.POI是一个开源的Java读写Excel.WORD等微软OLE2组件文档的项目. (一)传统操作Excel遇到的问题: 1.如果是.NET,需要在服务器端 ...

  3. Floyd最短路算法

    Floyd最短路算法 ----转自啊哈磊[坐在马桶上看算法]算法6:只有五行的Floyd最短路算法 暑假,小哼准备去一些城市旅游.有些城市之间有公路,有些城市之间则没有,如下图.为了节省经费以及方便计 ...

  4. python中urllib和urllib2的简单用法

    import urllib #引入urllib模块,这里用urllib2也可以 fpage = urllib.urlopen( url ) #打开网页:例如url=‘http://www.xxx.co ...

  5. Entity Framework菜鸟初飞

    Entity Framework菜鸟初飞 http://blog.csdn.net/zezhi821/article/details/7235134

  6. 【C++基础】指针好难啊,一点点啃——基本概念

    指针保存的是另一个对象的地址(概念真的很重要!!) ; int *ptr = &a;//*定义一个指向int类型的指针ptr, &a取变量a的地址 引用是对象的别名,多用于函数形参,引 ...

  7. Flume的Avro Sink和Avro Source研究之一: Avro Source

    问题 : Avro Source提供了怎么样RPC服务,是怎么提供的? 问题 1.1 Flume Source是如何启动一个Netty Server来提供RPC服务. 由GitHub上avro-rpc ...

  8. [转载]C++中声明与定义的区别

    C++学了这么多年你知道为什么定义类时,类的定义放在.h文件中,而类的实现放在cpp文件中.它们为什么能够关联到一起呢?你知道什么东西可以放在.h文件中,什么不能.什么东西又可以放在cpp文件中.如果 ...

  9. Checkpoint 和Breakpoint

    参考:http://www.cnblogs.com/qiangshu/p/5241699.htmlhttp://www.cnblogs.com/biwork/p/3366724.html 1. Che ...

  10. 【JAVA】servlet 定时启动

    步骤一: web.xml中加上如下的代码: <load-on-startup>10</load-on-startup>这句话是重点. <servlet> <s ...