Problem D

Morley’s Theorem

Input: 
Standard Input

Output: Standard Output

Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers . This six
integers actually indicates that the Cartesian coordinates of point A, B and C are  respectively. You can assume that the area of triangle ABC is not equal to zero,  and
the points A, B and C are in counter clockwise order.

Output

For each line of input you should produce one line of output. This line contains six floating point numbers  separated by a single space. These six floating-point
actually means that the Cartesian coordinates of D, E and F are  respectively. Errors less than   will
be accepted.

Sample Input   Output for Sample Input

2
1 1 2 2 1 2
0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

 

Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

题目大意:

作三角形的每一个角的三等分射线,相交成的三角形DEF为等边三角形。

解题思路:

通过向量的旋转以及直线的相交,求出对应的交点。

解题代码:

刘汝佳就是牛逼。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){
scanf("%lf%lf",&x,&y);
}
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度 //必须保证相交,也就是Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point getD(Point A,Point B,Point C){
double a1=Angle(A-B,C-B);
Vector v1=Rotate(C-B,a1/3.0);
double a2=Angle(A-C,B-C);
Vector v2=Rotate(B-C,-a2/3.0);
return GetLineIntersection(B,v1,C,v2);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
Point A,B,C,D,E,F;
A.read();
B.read();
C.read();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}

uva 11178 Morley&#39;s Theorem(计算几何-点和直线)的更多相关文章

  1. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA 11178 Morley's Theorem (坐标旋转)

    题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...

  3. UVA 11178 Morley's Theorem 计算几何模板

    题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...

  4. UVA 11178 Morley's Theorem (计算几何)

    题目链接 lrj训练指南 P259 //==================================================================== Point getP( ...

  5. UVA 11178 Morley's Theorem(几何)

    Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...

  6. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  7. UVA 11178 - Morley's Theorem 向量

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. UVA 11178 Morley's Theorem(旋转+直线交点)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...

  9. Uva 11178 Morley's Theorem 向量旋转+求直线交点

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...

随机推荐

  1. JavaScript学习总结【6】、JS BOM

    1.BOM 简介 所谓的 BOM 即浏览器对象模型(Browser Object Model).BOM 赋予了 JS 操作浏览器的能力,即 window 操作.DOM 则用于创建删除节点,操作 HTM ...

  2. input单选框全选与反选

    input单选框全选与反选 <!DOCTYPE html> <html lang="en"> <head> <meta charset=& ...

  3. new Image()的用途

    new Image()用途总结: 1.图片预加载      在做游戏时,为了使图片能快打开可以做预加载.      原理:创建image对象,将image对象的src分别指向需加载的图片地址,图片被请 ...

  4. [CSS]cursor鼠标样式

     用css控制鼠标样式的语法如下: <span style="cursor:*">文本或其它页面元素</span>  把 * 换成如下15个效果的一种:   ...

  5. Android 简单的FC

    直接贴log 01-02 08:17:56.589 I/ActivityManager( 312): Start proc com.android.providers.calendar for con ...

  6. Use_Case

    What is Use-Case 2.0?Use Case: A use case is all the ways of using a system to achieve a particular ...

  7. Linux下安装MySQLdb

    在Linux下使用Python访问MySQL的方法之一是使用MySQLdb module,下面将介绍在Linux下如何安装MySQLdb的过程. (1)下载MySQLdb 从SourceForge.n ...

  8. css3 3D盒子效果

    <!DOCTYPE html> <html> <head> <meta charset="utf-8"> <title> ...

  9. SQLSERVER 中GO的作用详解

    具体不废话了,请看下文详解. ? 1 2 3 4 5 6 7 8 9 10 use db_CSharp go  select *,  备注=case  when Grade>=90 then ' ...

  10. JavaService wrapper

    http://my.oschina.net/yjwxh/blog/260835 http://blog.chinaunix.net/uid-664509-id-3398193.html http:// ...