uva 11178 Morley's Theorem(计算几何-点和直线)
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers
. This six
integers actually indicates that the Cartesian coordinates of point A, B and C are
respectively. You can assume that the area of triangle ABC is not equal to zero,
and
the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point
actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will
be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
题目大意:
作三角形的每一个角的三等分射线,相交成的三角形DEF为等边三角形。
解题思路:
通过向量的旋转以及直线的相交,求出对应的交点。
解题代码:
刘汝佳就是牛逼。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){
scanf("%lf%lf",&x,&y);
}
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度 //必须保证相交,也就是Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point getD(Point A,Point B,Point C){
double a1=Angle(A-B,C-B);
Vector v1=Rotate(C-B,a1/3.0);
double a2=Angle(A-C,B-C);
Vector v2=Rotate(B-C,-a2/3.0);
return GetLineIntersection(B,v1,C,v2);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
Point A,B,C,D,E,F;
A.read();
B.read();
C.read();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}
uva 11178 Morley's Theorem(计算几何-点和直线)的更多相关文章
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
- UVA 11178 Morley's Theorem (计算几何)
题目链接 lrj训练指南 P259 //==================================================================== Point getP( ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
随机推荐
- web版扫雷小游戏(四)
~~~接上篇,游戏的主体框架完成了,接下来我们对游戏中存在的两个主要实体进行分析,一个是雷点类BombObject(节点对象),一个是节点对象对应的图片对象BombImgObject,根据第一篇的介绍 ...
- Struts2输入校验
1.编写校验规则文件 (<ActionName>-validation.xml),文件放在Action类文件相同的路径下校验失败返回input的result. <vali ...
- 查看linux进程(强制中止进程),服务及端口号,
进程状态查询 ps -aux [test@pan ~]$ ps -aux USER PID %CPU %MEM VSZ RSS TTY STAT START ...
- Git版本控制工具使用:Error pulling origin: error: Your local changes to the following files would be overwritten by merge
摘自: CSDN 逆觞 git在pull时,出现这种错误的时候,可能很多人进进行stash,相关stash的请看:Error pulling origin: error: Your local cha ...
- Linux进程和进程边界
1. 进程和线程 2. 手机操作系统的发展 3. 进程的地址空间边界 4. 进程边界的安全围栏: Crash的不可扩延性 5. 进程边界的安全围栏: 全局数据和服务的不可访问性 http://www. ...
- Windows安装Subversion
1.安装Setup-Subversion-1.8.16.msi下载地址:https://sourceforge.net/projects/win32svn/ 2.将svn添加到Windows系统服务s ...
- PinchEvent QML Type
PinchEvent类型在QtQuick 1.1中被添加进来.center, startCenter, previousCenter属性保存了两个触摸点之间的中心位置.scale and previo ...
- JavaScript 自定义单元测试
<!doctype html> <html> <head> <meta charset="utf-8"> <script> ...
- auto_ptr, which can release the space automatically
C++的auto_ptr所做的事情,就是动态分配对象以及当对象不再需要时自动执行清理. 使用std::auto_ptr,要#include <memory>.[1] 中文名 自动指针 外 ...
- Linux网络编程-----Socket地址API
(1) 通用socket地址 socket网络编程接口中表示socket地址的是结构体sockaddr,其定义如下: #include<bits/socket.h> struct sock ...