Problem D

Morley’s Theorem

Input: 
Standard Input

Output: Standard Output

Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.

Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.

Input

First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers . This six
integers actually indicates that the Cartesian coordinates of point A, B and C are  respectively. You can assume that the area of triangle ABC is not equal to zero,  and
the points A, B and C are in counter clockwise order.

Output

For each line of input you should produce one line of output. This line contains six floating point numbers  separated by a single space. These six floating-point
actually means that the Cartesian coordinates of D, E and F are  respectively. Errors less than   will
be accepted.

Sample Input   Output for Sample Input

2
1 1 2 2 1 2
0 0 100 0 50 50

1.316987 1.816987 1.183013 1.683013 1.366025 1.633975

56.698730 25.000000 43.301270 25.000000 50.000000 13.397460

 

Problemsetters: Shahriar Manzoor

Special Thanks: Joachim Wulff

题目大意:

作三角形的每一个角的三等分射线,相交成的三角形DEF为等边三角形。

解题思路:

通过向量的旋转以及直线的相交,求出对应的交点。

解题代码:

刘汝佳就是牛逼。

#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){
scanf("%lf%lf",&x,&y);
}
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度 //必须保证相交,也就是Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point getD(Point A,Point B,Point C){
double a1=Angle(A-B,C-B);
Vector v1=Rotate(C-B,a1/3.0);
double a2=Angle(A-C,B-C);
Vector v2=Rotate(B-C,-a2/3.0);
return GetLineIntersection(B,v1,C,v2);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
Point A,B,C,D,E,F;
A.read();
B.read();
C.read();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}

uva 11178 Morley&#39;s Theorem(计算几何-点和直线)的更多相关文章

  1. uva 11178 - Morley's Theorem

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  2. UVA 11178 Morley's Theorem (坐标旋转)

    题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...

  3. UVA 11178 Morley's Theorem 计算几何模板

    题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...

  4. UVA 11178 Morley's Theorem (计算几何)

    题目链接 lrj训练指南 P259 //==================================================================== Point getP( ...

  5. UVA 11178 Morley's Theorem(几何)

    Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...

  6. UVa 11178:Morley’s Theorem(两射线交点)

    Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...

  7. UVA 11178 - Morley's Theorem 向量

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...

  8. UVA 11178 Morley's Theorem(旋转+直线交点)

    题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...

  9. Uva 11178 Morley's Theorem 向量旋转+求直线交点

    http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...

随机推荐

  1. x的平方根

    class Solution { public: /** * @param x: An integer * @return: The sqrt of x */ int getResult(long s ...

  2. C#应用程序中读取Oracle数据库

    前言 最近的任务就是开发了一个功能,要从供应商那边读取数据,然后拿过来,处理以后放到我们自己的数据库中.供应商那边是Oracle数据库,其实不管什么数据我想都差不多,于是我就开始了.由于在家里写的博客 ...

  3. 纯JS写出日历

    封装代码: (function(cmf){ cmf.showDcalendar=function(){ var fnname=cmf.fn var id="cmfrili2" va ...

  4. php基础知识【函数】(1)数组array

    一.排序 1.sort -- 从最低到最高排序,删除原有的键名,赋予新的键名[字母比数字高] 2.rsort -- 逆向排序(最高到最低),删除原有的键名,赋予新的键名[字母比数字高] 3.asort ...

  5. adb找不到设备

    提示信息如下所示: adb server is out of date.killing... adb server didn't ACK *failed to start daemon * error ...

  6. js 中文排序

    /** * 比较函数 * @param {Object} param1 要比较的参数1 * @param {Object} param2 要比较的参数2 * @return {Number} 如果pa ...

  7. 通过Servlet的response绘制页面验证码

    java部分 package com.servlet; import java.awt.Color; import java.awt.Font; import java.awt.Graphics2D; ...

  8. 写个自动安装JDK的shell脚本

    #!/bin/bash ################################################# # # INSTALL JDK AUTOMATICALLY # # auth ...

  9. March of the Penguins

    poj3498:http://poj.org/problem?id=3498 题意:某个冰块上有a只企鹅,总共可以跳出去b只,问是否可能所有的企鹅都跳到某一块冰块上,输出所有的可能的冰块的编号. 由于 ...

  10. highestAvailable比较灵活,毕竟大多数功能不需要系统最高权限(四种方法:屏蔽UAC,右键以管理员身份运行,增加manisfest,制作数字证书)

    打开VS2005.VS2008.VS2010工程,查看工程文件夹中的Properties文件夹下是否有app.manifest这个文件:如没有,按如下方式创建:鼠标右击工程在菜单中选择“属性”,点击工 ...