uva 11178 Morley's Theorem(计算几何-点和直线)
Problem D
Morley’s Theorem
Input: Standard Input
Output: Standard Output
Morley’s theorem states that that the lines trisecting the angles of an arbitrary plane triangle meet at the vertices of an equilateral triangle. For example in the figure below the tri-sectors of angles A, B and C has intersected and created an equilateral
triangle DEF.
Of course the theorem has various generalizations, in particular if all of the tri-sectors are intersected one obtains four other equilateral triangles. But in the original theorem only tri-sectors nearest to BC are allowed to intersect to get point D, tri-sectors
nearest to CA are allowed to intersect point E and tri-sectors nearest to AB are intersected to get point F. Trisector like BD and CE are not allowed to intersect. So ultimately we get only one equilateral triangle DEF. Now your task is to find the Cartesian
coordinates of D, E and F given the coordinates of A, B, and C.
Input
First line of the input file contains an integer N (0<N<5001) which denotes the number of test cases to follow. Each of the next lines contain sixintegers . This six
integers actually indicates that the Cartesian coordinates of point A, B and C are respectively. You can assume that the area of triangle ABC is not equal to zero,
and
the points A, B and C are in counter clockwise order.
Output
For each line of input you should produce one line of output. This line contains six floating point numbers
separated by a single space. These six floating-point
actually means that the Cartesian coordinates of D, E and F are
respectively. Errors less than
will
be accepted.
Sample Input Output for Sample Input
2 1 1 2 2 1 2 0 0 100 0 50 50 |
1.316987 1.816987 1.183013 1.683013 1.366025 1.633975 56.698730 25.000000 43.301270 25.000000 50.000000 13.397460 |
Problemsetters: Shahriar Manzoor
Special Thanks: Joachim Wulff
题目大意:
作三角形的每一个角的三等分射线,相交成的三角形DEF为等边三角形。
解题思路:
通过向量的旋转以及直线的相交,求出对应的交点。
解题代码:
刘汝佳就是牛逼。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
using namespace std; struct Point{
double x,y;
Point(double x0=0,double y0=0){
x=x0,y=y0;
}
void read(){
scanf("%lf%lf",&x,&y);
}
}; typedef Point Vector; Vector operator + (Vector A,Vector B) { return Vector(A.x+B.x,A.y+B.y); }
Vector operator - (Vector A,Vector B) { return Vector(A.x-B.x,A.y-B.y); }
Vector operator * (Vector A,double p) { return Vector(A.x*p,A.y*p); }
Vector operator / (Vector A,double p) { return Vector(A.x/p,A.y/p); } double Dot(Vector A,Vector B){ return A.x*B.x+A.y*B.y; }
double Length(Vector A){ return sqrt(Dot(A,A)); }
double Angle(Vector A,Vector B){ return acos(Dot(A,B)/Length(A)/Length(B)); }
double Cross(Vector A,Vector B){ return A.x*B.y-A.y*B.x; }
Vector Rotate(Vector A,double rad){ return Vector(A.x*cos(rad)-A.y*sin(rad),A.x*sin(rad)+A.y*cos(rad)); }//逆时针旋转rad弧度 //必须保证相交,也就是Cross(v,w)非0
Point GetLineIntersection(Point P,Vector v,Point Q,Vector w){
Vector u=P-Q;
double t=Cross(w,u)/Cross(v,w);
return P+v*t;
} Point getD(Point A,Point B,Point C){
double a1=Angle(A-B,C-B);
Vector v1=Rotate(C-B,a1/3.0);
double a2=Angle(A-C,B-C);
Vector v2=Rotate(B-C,-a2/3.0);
return GetLineIntersection(B,v1,C,v2);
} int main(){
int T;
scanf("%d",&T);
while(T-- >0){
Point A,B,C,D,E,F;
A.read();
B.read();
C.read();
D=getD(A,B,C);
E=getD(B,C,A);
F=getD(C,A,B);
printf("%.6lf %.6lf %.6lf %.6lf %.6lf %.6lf\n",D.x,D.y,E.x,E.y,F.x,F.y);
}
return 0;
}
uva 11178 Morley's Theorem(计算几何-点和直线)的更多相关文章
- uva 11178 - Morley's Theorem
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem (坐标旋转)
题目链接:UVA 11178 Description Input Output Sample Input Sample Output Solution 题意 \(Morley's\ theorem\) ...
- UVA 11178 Morley's Theorem 计算几何模板
题意:训练指南259页 #include <iostream> #include <cstdio> #include <cstring> #include < ...
- UVA 11178 Morley's Theorem (计算几何)
题目链接 lrj训练指南 P259 //==================================================================== Point getP( ...
- UVA 11178 Morley's Theorem(几何)
Morley's Theorem [题目链接]Morley's Theorem [题目类型]几何 &题解: 蓝书P259 简单的几何模拟,但要熟练的应用模板,还有注意模板的适用范围和传参不要传 ...
- UVa 11178:Morley’s Theorem(两射线交点)
Problem DMorley’s TheoremInput: Standard Input Output: Standard Output Morley’s theorem states that ...
- UVA 11178 - Morley's Theorem 向量
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&p ...
- UVA 11178 Morley's Theorem(旋转+直线交点)
题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=18543 [思路] 旋转+直线交点 第一个计算几何题,照着书上代码打 ...
- Uva 11178 Morley's Theorem 向量旋转+求直线交点
http://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=9 题意: Morlery定理是这样的:作三角形ABC每个 ...
随机推荐
- TreeList
1.获取当前被选中的节点数据 string tmp = treeL.FocusedNode.GetDisplayText(this.treeListColumnIndex); 2.是否允许编辑 tre ...
- sencha touch中按钮的ui配置选项值及使用效果
- js 中特殊形势的函数-匿名函数的应用
javascript中的匿名函数,那什么叫做匿名函数? 匿名函数就是没有函数名称:演示代码: <script> function(x,y){ return x+y //这个就是一个匿名函数 ...
- ubuntu 14.04安装quickbuild buildagent (二)
使用方法: /home/carloz/programfiles/quickbuild6/buildagent/bin/agent.sh start /home/carloz/programfiles/ ...
- Hadoop, Python, and NoSQL lead the pack for big data jobs
Hadoop, Python, and NoSQL lead the pack for big data jobs Rise in cloud-based analytics could incr ...
- 练习2 G题 - 数值统计
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Description 统计给 ...
- 编程思想—控制反转(IOC)及依赖注入(DI)
1.什么是依赖注入 在面向对象的编程语言中,一个对象的行为方法往往需要外界的对象的行为协助才能完成. 例如:小李去ATM机取钱,那小李的取钱的整个行为的完成需要ATM实例取款行为的协助才能完成. pu ...
- PAT (Basic Level) 1002. 写出这个数 (20)
读入一个自然数n,计算其各位数字之和,用汉语拼音写出和的每一位数字. 输入格式:每个测试输入包含1个测试用例,即给出自然数n的值.这里保证n小于10100. 输出格式:在一行内输出n的各位数字之和的每 ...
- spm使用之七不用seajs改用headjs起步
这几天在看phpwind官方网站, 他们的前端用了一个叫做head.js的js加载器, 官方网站在 http://headjs.com/ 号称是你只需要在你的html文件中的<head>& ...
- matlab中元胞数组(cell)转换为矩阵
matlab中元胞数组(cell)转换为矩阵. cell转换为矩阵函数为:cell2mat(c),其中c为待转换的元胞数组: 转化之后的矩阵可能不满足我们对矩阵维数的要求,那么也许还需要下面两个函数: ...