征途

【问题描述】

Pine开始了从S地到T地的征途。

从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站。

Pine计划用m天到达T地。除第m天外,每一天晚上Pine都必须在休息站过夜。所以,一段路必须在同一天中走完。

Pine希望每一天走的路长度尽可能相近,所以他希望每一天走的路的长度的方差尽可能小。

帮助Pine求出最小方差是多少。

设方差是v,可以证明,v×m^2是一个整数。为了避免精度误差,输出结果时输出v×m^2。

【输入格式】

第一行两个数 n、m。

第二行 n 个数,表示 n 段路的长度

【输出格式】

一个数,最小方差乘以 m^2 后的

【样例输入】

5 2
1 2 5 8 6

【样例输出】

36

【数据范围】

1≤n≤3000,保证从 S 到 T 的总路程不超过 30000


题解:

来推一下式子:

方差:(x1 - aver)2 + (x2 - aver)+ ... + (xm - aver)2  / m

然后题意要求乘m2

那么

 m×[(x1 - aver)2 + (x2 - aver)+ ... + (xm - aver)]

= m×[x12 + x22 + ... + xm2 - 2aver(x+ x2 + ... + xm ) + m × aver2]

= m×(x12 + x22 + ... + xm2) - 2sum+ sum2  (aver = sum / m)

= m×(x12 + x22 + ... + xm2) - sum

其实m和sum都为常量,那么只要考虑中间的平方和部分

设f[i][j]为分到点j且分成i段时每一段的平方和

转移方程即为:f[i][j] = min(f[i][j], f[i - 1][k] + (sum[j] - sum[k]) * (sum[j] - sum[k])); (k < j)

三方效率肯定过不了,看出这是一个斜率优化的裸题,那就可以虾搞蛋了~\(≧▽≦)/~

 #include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
using namespace std;
inline int Get()
{
int x = ;
char c = getchar();
while('' > c || c > '') c = getchar();
while('' <= c && c <= '')
{
x = (x << ) + (x << ) + c - '';
c = getchar();
}
return x;
}
int n, m;
int t, w;
int c[];
int s[];
long long aver;
long long f[][];
long long sum[];
double Up(int x, int y, int i)
{
return f[i - ][x] + sum[x] * sum[x] - f[i - ][y] - sum[y] * sum[y];
}
double Down(int x, int y)
{
return (sum[x] - sum[y]) << ;
}
long long Dp(int i, int j, int x)
{
return f[i - ][x] + (sum[j] - sum[x]) * (sum[j] - sum[x]);
}
int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++i)
for(int j = ; j <= n; ++j)
f[i][j] = 214748364721474836LL;
for(int i = ; i <= n; ++i)
{
scanf("%d", &c[i]);
sum[i] = sum[i - ] + c[i];
f[][i] = sum[i] * sum[i];
}
aver = sum[n];
for(int i = ; i <= m; ++i)
{
t = , w = ;
s[++w] = i - ;
for(int j = i; j <= n; ++j)
{
/*
for(int k = i - 1; k <= j; ++k)
f[i][j] = min(f[i][j], f[i - 1][k] + (sum[j] - sum[k]) * (sum[j] - sum[k]));
*/
while(t < w && Up(s[t], s[t + ], i) / Down(s[t], s[t + ]) <= sum[j]) ++t;
f[i][j] = Dp(i, j, s[t]);
while(t < w && Up(j, s[w], i) / Down(j, s[w]) <= Up(s[w], s[w - ], i) / Down(s[w], s[w - ])) --w;
s[++w] = j;
}
}
printf("%lld", (long long) m * f[m][n] - aver * aver);
}

征途 bzoj 4518的更多相关文章

  1. 动态规划(决策单调优化):BZOJ 4518 [Sdoi2016]征途

    4518: [Sdoi2016]征途 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 532  Solved: 337[Submit][Status][ ...

  2. BZOJ 4518: [Sdoi2016]征途 [斜率优化DP]

    4518: [Sdoi2016]征途 题意:\(n\le 3000\)个数分成m组,一组的和为一个数,求最小方差\(*m^2\) DP方程随便写\(f[i][j]=min\{f[k][j-1]+(s[ ...

  3. BZOJ 4518 [Sdoi2016]征途(分治DP)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=4518 [题目大意] 给出一个数列,分成m段,求方差最小,答案乘上m的平方. [题解] ...

  4. ●BZOJ 4518 [Sdoi2016]征途

    题链: http://www.lydsy.com/JudgeOnline/problem.php?id=4518 题解: 斜率优化DP 首先看看最后答案的形式: 设a[i]为第i天走的距离,那么 $A ...

  5. bzoj 4518: [Sdoi2016]征途

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  6. 【题解】征途 SDOI 2016 BZOJ 4518

    传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=4518 首先推式子,我们用$x_i$表示第$i$段的路程,$sum$表示总路程,根据方差和平均 ...

  7. 征途(bzoj 4518)

    Description Pine开始了从S地到T地的征途. 从S地到T地的路可以划分成n段,相邻两段路的分界点设有休息站. Pine计划用m天到达T地.除第m天外,每一天晚上Pine都必须在休息站过夜 ...

  8. BZOJ 4518 征途

    斜率优化.又是变量名打错看了老半天. 把方差式子展开一下就好了. #include<iostream> #include<cstdio> #include<cstring ...

  9. 【BZOJ 4518】【SDOI 2016 Round1 Day2 T3】征途

    比较明显的斜率优化DP,省选时因为时间太紧张和斜率DP写得不熟等原因只写了60分的暴力DP,其实当时完全可以对拍来检验标算的正确,但是我当时too naive- 很快打完了,调了将近一晚上QAQ,因为 ...

随机推荐

  1. thinkphp数据的查询和截取

    public function NewsList(){ $this->assign('title','news'); $p = I('page',1); $listRows = 6; $News ...

  2. C语言可以开发哪些项目?

    C语言是我们大多数人的编程入门语言,对其也再熟悉不过了,不过很多初学者在学习的过程中难免会出现迷茫,比如:不知道C语言可以开发哪些项目,可以应用在哪些实际的开发中--,这些迷茫也导致了我们在学习的过程 ...

  3. Atitit.你这些项目不都是模板吗?不是原创  集成和整合的方式大总结

    Atitit.你这些项目不都是模板吗?不是原创  集成和整合的方式大总结 1.1. 乔布斯的名言:创新即整合(Creativity is just connecting things).1 1.2. ...

  4. 设置Hyper-V和VMware多个服务之间共存

    这个方法是解决多个服务之间不能共存,下面相当于是以Hyper-V和VMware做例子,其他的也适用. 今天准备安装VMware Workstation 10,然后玩玩MAC OS. 没想到,淡定的我双 ...

  5. 关于sql server 2005存储过程的写法

    打开数据库的SQL Server Managerment Studio---->数据库----->打开数据库会看见"可编程行"------->打开有存储过程--- ...

  6. 跟着老男孩教育学Python开发【第三篇】:Python函数

    set 无序,不重复,可嵌套. 函数 创建函数: 1.def关键字,创建函数 2.函数名 3.() 4.函数体 5.返回值 发邮件函数 def sendmail():     import smtpl ...

  7. Lesson 24 It could be worse

    Text I entered the hotel manager's office and sat down. I had just lost £50 and I felt very upset. ' ...

  8. video.js--很赞的H5视频播放库

    video.js是一款很流行的html5视频播放插件.很适合在移动端播放视频(比如微信网页),功能强大,且支持降级到flash,兼容ie8.官网:http://videojs.com/    git& ...

  9. Git入门资料汇总

    Git是一个非常好用的版本控制工具,同时,它也是一个相对比较复杂的工具,想要掌握它还是需要花一番功夫的.网络上关于Git的入门资料已经很多了,我就不再重复了,直接把我学习的文章放在这里. Git详解 ...

  10. ABP源码分析三十七:ABP.Web.Api Script Proxy API

    ABP提供Script Proxy WebApi为所有的Dynamic WebApi生成访问这些WebApi的JQuery代理,AngularJs代理以及TypeScriptor代理.这些个代理就是j ...