题目:

Given a string s, partition s such that every substring of the partition is a palindrome.

Return all possible palindrome partitioning of s.

For example, given s = "aab",
Return

  [
["aa","b"],
["a","a","b"]

链接:  http://leetcode.com/problems/palindrome-partitioning/

题解:

一看到return all xxxx,就猜到可能要用回溯。这道题就是比较典型的递归+回溯。递归前要判断当前的子字符串是否palindrome,答案是false的话要continue。

Time Complexity - O(n*2n), Space Complexity - O(n*2n)

public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if(s == null || s.length() == 0)
return res;
ArrayList<String> list = new ArrayList<>();
partition(res, list, s, 0);
return res;
} private void partition(List<List<String>> res, ArrayList<String> list, String s, int pos) {
if(pos == s.length()) {
res.add(new ArrayList<String>(list));
return;
} for(int i = pos + 1; i <= s.length(); i++) {
String partition = s.substring(pos, i);
if(!isPalindrome(partition))
continue;
list.add(partition);
partition(res, list, s, i);
list.remove(list.size() - 1);
}
} private boolean isPalindrome(String s) {
int lo = 0, hi = s.length() - 1; while(lo < hi) {
if(s.charAt(lo) != s.charAt(hi))
return false;
lo++;
hi--;
} return true;
}
}

需要好好看看主方法来确定定量分析递归算法的时间复杂度。

二刷:

仔细想一想代码可以简化不少。主要分为三部分。1是题目给定的方法,2是辅助方法,用来递归和回溯,3是判断string是否是palindrome。注意考虑清楚需要多少变量,以及时间空间复杂度。

Time Complexity: O(n!)

Space Complexity: O(n ^ 2)

Java:

public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
List<String> list = new ArrayList<>();
partition(res, list, s);
return res;
} private void partition(List<List<String>> res, List<String> list, String s) {
if (s == null || s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
for (int i = 0; i < s.length(); i++) {
String subStr = s.substring(0, i + 1);
if (isPalindrome(subStr)) {
list.add(subStr);
partition(res, list, s.substring(i + 1));
list.remove(list.size() - 1);
}
}
} private boolean isPalindrome(String s) {
if (s == null || s.length() < 2) {
return true;
}
int lo = 0, hi = s.length() - 1;
while (lo <= hi) {
if (s.charAt(lo) != s.charAt(hi)) {
return false;
}
lo++;
hi--;
}
return true;
}
}

三刷:

依然是使用二刷的方法。

Java:

public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if (s == null || s.length() == 0) return res;
partition(res, new ArrayList<>(), s);
return res;
} private void partition(List<List<String>> res, List<String> list, String s) {
if (s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
for (int i = 0; i <= s.length(); i++) {
String front = s.substring(0, i);
if (isPalindrome(front)) {
list.add(front);
partition(res, list, s.substring(i));
list.remove(list.size() - 1);
}
}
} private boolean isPalindrome(String s) {
if (s == null || s.length() == 0) return false;
int lo = 0, hi = s.length() - 1;
while (lo < hi) {
if (s.charAt(lo) != s.charAt(hi)) return false;
lo++;
hi--;
}
return true;
}
}

Reference:

http://stackoverflow.com/questions/24591616/whats-the-time-complexity-of-this-algorithm-for-palindrome-partitioning

http://blog.csdn.net/metasearch/article/details/4428865

https://en.wikipedia.org/wiki/Master_theorem

http://www.cnblogs.com/zhuli19901106/p/3570430.html

https://leetcode.com/discuss/18984/java-backtracking-solution

https://leetcode.com/discuss/9623/my-java-dp-only-solution-without-recursion-o-n-2

https://leetcode.com/discuss/41626/concise-java-solution

https://leetcode.com/discuss/4788/shouldnt-we-use-dp-in-addition-to-dfs

131. Palindrome Partitioning的更多相关文章

  1. leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II

    131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...

  2. Leetcode 22. Generate Parentheses Restore IP Addresses (*) 131. Palindrome Partitioning

    backtracking and invariant during generating the parathese righjt > left  (open bracket and cloas ...

  3. Leetcode 131. Palindrome Partitioning

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  4. 78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning

    78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: The solution ...

  5. [leetcode]131. Palindrome Partitioning字符串分割成回文子串

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  6. 【LeetCode】131. Palindrome Partitioning

    Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...

  7. 131. Palindrome Partitioning (Back-Track, DP)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  8. 131. Palindrome Partitioning(回文子串划分 深度优先)

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

  9. Java for LeetCode 131 Palindrome Partitioning

    Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...

随机推荐

  1. UIButton 按钮文字左对齐

    btn.contentHorizontalAlignment = UIControlContentHorizontalAlignmentLeft; btn.titleEdgeInsets = UIEd ...

  2. vue防止闪烁

    v-text也可以 转意的话使用v-html <style> [v-clock]{ display:none } <style> <span>{{msg}}< ...

  3. WebClient以POST方式发送Web请求

    本例使用WebClient以POST方式发送Web请求并下载一个文件,难点是postData的构造,发送Web请求时有的网站要求可能要求 Cookies前后一致.其中application/x-www ...

  4. off() 方法 与 unbind() 方法移除绑定事件的处理程序。one()函数用于为每个匹配元素的一个或多个事件绑定一次性事件处理函数

    off() 方法移除用.on()绑定的事件处理程序. unbind() 方法移除用.bind()绑定的事件处理程序. 从 jQuery 1.7开始, .on() 和 .off()方法是最好的元素上附加 ...

  5. Java小例子——穷举质数,求平方和,求质因子。

    求平方和 public static void main(String[] args) throws IOException { int n; String s; BufferedReader buf ...

  6. poj 1830 开关问题

    开关问题 题意:给n(0 < n < 29)开关的初始和最终状态(01表示),以及开关之间的关联关系(关联关系是单向的输入a b表示a->b),问有几种方式得到最终的状态.否则输出字 ...

  7. 【Druid】 阿里巴巴推出的国产数据库连接池com.alibaba.druid.pool.DruidDataSource

    阿里巴巴推出的国产数据库连接池,据网上测试对比,比目前的DBCP或C3P0数据库连接池性能更好   简单使用介绍 Druid与其他数据库连接池使用方法基本一样(与DBCP非常相似),将数据库的连接信息 ...

  8. XSS传染基础——JavaScript中的opener、iframe

    最近研究XSS,根据etherDream大神的博客 延长XSS生命周期 写了一个子页面父页面相互修改的demo. 一. 子页面.父页面相互修改——window.opener.window.open 在 ...

  9. 破坏之王——ddos攻击与防范 读书笔记

    好久没写博客了,最近把绿盟的<破坏之王——ddos攻击与防范>又翻了一下,整理了关于DDOS分类和原理的xmind图~~ 百度云盘:http://pan.baidu.com/s/1i3ms ...

  10. AJax跨域请求百度音乐接口数据展示页面

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...