131. Palindrome Partitioning
题目:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab",
Return
[
["aa","b"],
["a","a","b"]
]
链接: http://leetcode.com/problems/palindrome-partitioning/
题解:
一看到return all xxxx,就猜到可能要用回溯。这道题就是比较典型的递归+回溯。递归前要判断当前的子字符串是否palindrome,答案是false的话要continue。
Time Complexity - O(n*2n), Space Complexity - O(n*2n)
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if(s == null || s.length() == 0)
return res;
ArrayList<String> list = new ArrayList<>();
partition(res, list, s, 0);
return res;
}
private void partition(List<List<String>> res, ArrayList<String> list, String s, int pos) {
if(pos == s.length()) {
res.add(new ArrayList<String>(list));
return;
}
for(int i = pos + 1; i <= s.length(); i++) {
String partition = s.substring(pos, i);
if(!isPalindrome(partition))
continue;
list.add(partition);
partition(res, list, s, i);
list.remove(list.size() - 1);
}
}
private boolean isPalindrome(String s) {
int lo = 0, hi = s.length() - 1;
while(lo < hi) {
if(s.charAt(lo) != s.charAt(hi))
return false;
lo++;
hi--;
}
return true;
}
}
需要好好看看主方法来确定定量分析递归算法的时间复杂度。
二刷:
仔细想一想代码可以简化不少。主要分为三部分。1是题目给定的方法,2是辅助方法,用来递归和回溯,3是判断string是否是palindrome。注意考虑清楚需要多少变量,以及时间空间复杂度。
Time Complexity: O(n!)
Space Complexity: O(n ^ 2)
Java:
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
List<String> list = new ArrayList<>();
partition(res, list, s);
return res;
}
private void partition(List<List<String>> res, List<String> list, String s) {
if (s == null || s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
for (int i = 0; i < s.length(); i++) {
String subStr = s.substring(0, i + 1);
if (isPalindrome(subStr)) {
list.add(subStr);
partition(res, list, s.substring(i + 1));
list.remove(list.size() - 1);
}
}
}
private boolean isPalindrome(String s) {
if (s == null || s.length() < 2) {
return true;
}
int lo = 0, hi = s.length() - 1;
while (lo <= hi) {
if (s.charAt(lo) != s.charAt(hi)) {
return false;
}
lo++;
hi--;
}
return true;
}
}
三刷:
依然是使用二刷的方法。
Java:
public class Solution {
public List<List<String>> partition(String s) {
List<List<String>> res = new ArrayList<>();
if (s == null || s.length() == 0) return res;
partition(res, new ArrayList<>(), s);
return res;
}
private void partition(List<List<String>> res, List<String> list, String s) {
if (s.length() == 0) {
res.add(new ArrayList<String>(list));
return;
}
for (int i = 0; i <= s.length(); i++) {
String front = s.substring(0, i);
if (isPalindrome(front)) {
list.add(front);
partition(res, list, s.substring(i));
list.remove(list.size() - 1);
}
}
}
private boolean isPalindrome(String s) {
if (s == null || s.length() == 0) return false;
int lo = 0, hi = s.length() - 1;
while (lo < hi) {
if (s.charAt(lo) != s.charAt(hi)) return false;
lo++;
hi--;
}
return true;
}
}
Reference:
http://stackoverflow.com/questions/24591616/whats-the-time-complexity-of-this-algorithm-for-palindrome-partitioning
http://blog.csdn.net/metasearch/article/details/4428865
https://en.wikipedia.org/wiki/Master_theorem
http://www.cnblogs.com/zhuli19901106/p/3570430.html
https://leetcode.com/discuss/18984/java-backtracking-solution
https://leetcode.com/discuss/9623/my-java-dp-only-solution-without-recursion-o-n-2
https://leetcode.com/discuss/41626/concise-java-solution
https://leetcode.com/discuss/4788/shouldnt-we-use-dp-in-addition-to-dfs
131. Palindrome Partitioning的更多相关文章
- leetcode 131. Palindrome Partitioning 、132. Palindrome Partitioning II
131. Palindrome Partitioning substr使用的是坐标值,不使用.begin()..end()这种迭代器 使用dfs,类似于subsets的题,每次判断要不要加入这个数 s ...
- Leetcode 22. Generate Parentheses Restore IP Addresses (*) 131. Palindrome Partitioning
backtracking and invariant during generating the parathese righjt > left (open bracket and cloas ...
- Leetcode 131. Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 78. Subsets(M) & 90. Subsets II(M) & 131. Palindrome Partitioning
78. Subsets Given a set of distinct integers, nums, return all possible subsets. Note: The solution ...
- [leetcode]131. Palindrome Partitioning字符串分割成回文子串
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 【LeetCode】131. Palindrome Partitioning
Palindrome Partitioning Given a string s, partition s such that every substring of the partition is ...
- 131. Palindrome Partitioning (Back-Track, DP)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- 131. Palindrome Partitioning(回文子串划分 深度优先)
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
- Java for LeetCode 131 Palindrome Partitioning
Given a string s, partition s such that every substring of the partition is a palindrome. Return all ...
随机推荐
- Hql 中实用查询时候 引号的使用
出错代码://List vlist = this.getHibernateTemplate().find("from AndroidCustomer ct where ct.token = ...
- asp:手机扫描二维码跳转手机版
如果想手机扫描用pc版网站生成的二维码跳转到对应的手机版的话,请在pc端的首页的<head></head>标签里面加入下面内容: <script src=" ...
- 常用的 Internet Browser adds-on/浏览器插件
主要应用在Firefox, 或 Google Chrome 一.AdBlockPlus 广告屏蔽软件 二.GreaseMonkey 多样化网页 三.Dictionary.com 弹出单词的解释,来自 ...
- 模板:使用new delete 创建二维数组
int **arr_matrix = new int*[n]; ; i < n; ++i) arr_matrix[i] = new int[n]; //内容 ; i < n; ++i) d ...
- Windows下Wamp装不上Memcache扩展
windows下wamp装不上memcache扩展2015.03.20 No Comments 1,243 views用的是WAMP集成包,PHP版本5.5.12http://windows.php. ...
- linux中的sticky bit
今天看到有个目录的权限是rwxrwxrwt 很惊讶这个t是什么,怎么不是x或者-呢?搜了下发现: 这个t代表是所谓的sticky bit. sticky bit: 该位可以理解为防删除位. 一个文件是 ...
- PHP5.3后在本机运行很慢的解决方法
方法一:这是因为PHP 5.3在面对数据库配置信息中的“localhost”会犹豫,因此直接把这个地址改名为“127.0.0.1”,这个IP是IPv4下面的本地网络地址,实际作用和“localhost ...
- JQuery(三) Ajax相关
JQuery大大简化了Ajax通用操作,开发者只需要指定请求URL,回调函数即可. 三个主要方法: $().param(obj):将obj参数(对象或数组)转化成查询字符串. {name:" ...
- Transaction的理解
Transaction的理解 待完善......
- 【1】Bootstrap入门引言
Bootstrap学习者要具备的一些要求: [1]xhtml常用标签的基础知识 [2]xhtml+css布局的基础知识 [3]html5+css3的基础知识 ===================== ...