SparkSQL和DataFrame
SparkSQL和DataFrame
SparkSQL简介
Spark SQL是Spark用来处理结构化数据的一个模块,它提供了一个编程抽象叫做DataFrame并且作为分布式SQL查询引擎的作用。它是将Spark SQL转换成RDD,然后提交到集群执行,执行效率非常快!
SparkSQL的特性
1.易整合
2.统一的数据访问方式
3.兼容Hive
4.标准的数据连接
DataFrames简介
与RDD类似,DataFrame也是一个分布式数据容器。然而DataFrame更像传统数据库的二维表格,除了数据以外,还记录数据的结构信息,即schema。同时,与Hive类似,DataFrame也支持嵌套数据类型(struct、array和map)。从API易用性的角度上 看,DataFrame API提供的是一套高层的关系操作,比函数式的RDD API要更加友好,门槛更低。由于与R和Pandas的DataFrame类似,Spark DataFrame很好地继承了传统单机数据分析的开发体验。
创建DataFrames
在Spark SQL中SQLContext是创建DataFrames和执行SQL的入口,在spark-1.5.2中已经内置了一个sqlContext
1.在本地创建一个文件,有三列,分别是id、name、age,用空格分隔,然后上传到hdfs上
hdfs dfs -put person.txt /
2.在spark shell执行下面命令,读取数据,将每一行的数据使用列分隔符分割
val lineRDD = sc.textFile("hdfs://node1:9000/person.txt").map(_.split(" "))
3.定义case class(相当于表的schema)
case class Person(id:Int, name:String, age:Int)
4.将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
5.将RDD转换成DataFrame
val personDF = personRDD.toDF
6.对DataFrame进行处理
personDF.show
DataFrames常见操作
1.//查看DataFrame中的内容
personDF.show
2.//查看DataFrame部分列中的内容
personDF.select(personDF.col("name")).show
personDF.select(col("name"), col("age")).show
personDF.select("name").show
3.//打印DataFrame的Schema信息
personDF.printSchema
4.//查询所有的name和age,并将age+1
personDF.select(col("id"), col("name"), col("age") + 1).show
personDF.select(personDF("id"), personDF("name"), personDF("age") + 1).show
5.//过滤age大于等于18的
personDF.filter(col("age") >= 18).show
6.//按年龄进行分组并统计相同年龄的人数
personDF.groupBy("age").count().show()
使用SparkSQL风格
如果想使用SQL风格的语法,需要将DataFrame注册成表
personDF.registerTempTable("t_person")
1.//查询年龄最大的前两名
sqlContext.sql("select * from t_person order by age desc limit 2").show
2.//显示表的Schema信息
sqlContext.sql("desc t_person").show
sqlContext.sql()中的内容和写普通的基本一致,但是要注意SparkSQL不支持子查询
编写程序执行SparkSQL语句
1.首先在maven项目的pom.xml中添加Spark SQL的依赖
<dependency>
<groupId>org.apache.spark</groupId>
<artifactId>spark-sql_2.10</artifactId>
<version>1.5.2</version>
</dependency>
2.具体写法1使用case class
import org.apache.spark.{SparkConf, SparkContext}
import org.apache.spark.sql.SQLContext
object InferringSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-1")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val lineRDD = sc.textFile(args(0)).map(_.split(" "))
//创建case class
//将RDD和case class关联
val personRDD = lineRDD.map(x => Person(x(0).toInt, x(1), x(2).toInt))
//导入隐式转换,如果不到人无法将RDD转换成DataFrame
//将RDD转换成DataFrame
import sqlContext.implicits._
val personDF = personRDD.toDF
//注册表
personDF.registerTempTable("t_person")
//传入SQL
val df = sqlContext.sql("select * from t_person order by age desc limit 2")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
//case class一定要放到外面
case class Person(id: Int, name: String, age: Int)
将程序打成jar包,上传到spark集群,提交Spark任务
/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-submit \
--class spark.sql.InferringSchema \
--master spark://node1:7077 \
/root/spark-mvn-1.0-SNAPSHOT.jar \
hdfs://node1:9000/person.txt \
hdfs://node1:9000/out
查看运行结果
hdfs dfs -cat hdfs://node1:9000/out/part-r-*
3.具体写法2,通过StructType直接指定Schema
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.sql.types._
import org.apache.spark.{SparkContext, SparkConf}
object SpecifyingSchema {
def main(args: Array[String]) {
//创建SparkConf()并设置App名称
val conf = new SparkConf().setAppName("SQL-2")
//SQLContext要依赖SparkContext
val sc = new SparkContext(conf)
//创建SQLContext
val sqlContext = new SQLContext(sc)
//从指定的地址创建RDD
val personRDD = sc.textFile(args(0)).map(_.split(" "))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//注册表
personDataFrame.registerTempTable("t_person")
//执行SQL
val df = sqlContext.sql("select * from t_person order by age desc limit 4")
//将结果以JSON的方式存储到指定位置
df.write.json(args(1))
//停止Spark Context
sc.stop()
}
}
从MySQL中加载数据(Spark Shell方式)
1.启动Spark Shell,必须指定mysql连接驱动jar包
/usr/local/spark-1.5.2-bin-hadoop2.6/bin/spark-shell \
--master spark://node1:7077 \
--jars /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar \
--driver-class-path /usr/local/spark-1.5.2-bin-hadoop2.6/mysql-connector-java-5.1.35-bin.jar
2.从mysql中加载数据
val jdbcDF = sqlContext.read.format("jdbc").options(Map("url" -> "jdbc:mysql://XXX:3306/bigdata", "driver" -> "com.mysql.jdbc.Driver", "dbtable" -> "person", "user" -> "root", "password" -> "123456")).load()
3.执行查询
jdbcDF.show()
将数据写入到MySQL中
import java.util.Properties
import org.apache.spark.sql.{SQLContext, Row}
import org.apache.spark.sql.types.{StringType, IntegerType, StructField, StructType}
import org.apache.spark.{SparkConf, SparkContext}
object JdbcRDD {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("MySQL-Demo")
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
//通过并行化创建RDD
val personRDD = sc.parallelize(Array("1 tom 5", "2 jerry 3", "3 kitty 6")).map(_.split(" "))
//通过StructType直接指定每个字段的schema
val schema = StructType(
List(
StructField("id", IntegerType, true),
StructField("name", StringType, true),
StructField("age", IntegerType, true)
)
)
//将RDD映射到rowRDD
val rowRDD = personRDD.map(p => Row(p(0).toInt, p(1).trim, p(2).toInt))
//将schema信息应用到rowRDD上
val personDataFrame = sqlContext.createDataFrame(rowRDD, schema)
//创建Properties存储数据库相关属性
val prop = new Properties()
prop.put("user", "root")
prop.put("password", "123456")
//将数据追加到数据库
personDataFrame.write.mode("append").jdbc("jdbc:mysql://192.168.10.1:3306/bigdata", "bigdata.person", prop)
//停止SparkContext
sc.stop()
}
}
hive on spark-SQL
1.安装hive,修改元数据库,加上hive-site.xml(mysql连接)
2.将hive-site.xml文件拷贝到spark集群的conf下
3.将mysql.jar拷贝到spark.lib下
4.执行:sqlCOntext.sql("select * from table1").show()
.write.mode("append")
.jdbc()
.foreachPartition(it=>{
1.初始化连接
2.it.map(x=>{
写数据到存储层
})
3.关连接
})
SparkSQL和DataFrame的更多相关文章
- sparkSQL获取DataFrame的几种方式
sparkSQL获取DataFrame的几种方式 1. on a specific DataFrame. import org.apache.spark.sql.Column df("col ...
- Spark-SQL之DataFrame操作大全
Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFra ...
- Spark-SQL之DataFrame操作
Spark SQL中的DataFrame类似于一张关系型数据表.在关系型数据库中对单表或进行的查询操作,在DataFrame中都可以通过调用其API接口来实现.可以参考,Scala提供的DataFra ...
- Spark之 SparkSql、DataFrame、DataSet介绍
SparkSql SparkSql是专门为spark设计的一个大数据仓库工具,就好比hive是专门为hadoop设计的一个大数据仓库工具一样. 特性: .易整合 可以将sql查询与spark应用程序进 ...
- 【sparkSQL】DataFrame的常用操作
scala> import org.apache.spark.sql.SparkSession import org.apache.spark.sql.SparkSession scala> ...
- 小记--------sparksql和DataFrame的小小案例java、scala版本
sparksql是spark中的一个模块,主要用于进行结构化数据的处理,他提供的最核心的编程抽象,就是DataFrame.同时,sparksql还可以作为分布式的sql查询引擎. 最最重要的功能就是从 ...
- 大数据学习day24-------spark07-----1. sortBy是Transformation算子,为什么会触发Action 2. SparkSQL 3. DataFrame的创建 4. DSL风格API语法 5 两种风格(SQL、DSL)计算workcount案例
1. sortBy是Transformation算子,为什么会触发Action sortBy需要对数据进行全局排序,其需要用到RangePartitioner,而在创建RangePartitioner ...
- Spark-Sql之DataFrame实战详解
1.DataFrame简介: 在Spark中,DataFrame是一种以RDD为基础的分布式数据据集,类似于传统数据库听二维表格,DataFrame带有Schema元信息,即DataFrame所表示的 ...
- sparkSQL、dataframe
http://www.aboutyun.com/forum.php?mod=viewthread&tid=12358&page=1 空值填充:http://spark.apache.o ...
随机推荐
- JavaScript中给onclick绑定事件后return false遇到的问题
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- PAT 1041 考试座位号
https://pintia.cn/problem-sets/994805260223102976/problems/994805281567916032 每个PAT考生在参加考试时都会被分配两个座位 ...
- HDU 2071 Max Num
http://acm.hdu.edu.cn/showproblem.php?pid=2071 Problem Description There are some students in a clas ...
- SQLServer:介质簇计数 缺失的介质簇序列号
https://shiyousan.com/post/635886596017415485 http://www.cnblogs.com/yc-755909659/p/3725940.html 错误描 ...
- CIO知识储备
1.IT安全和法规知识是CIO的首要 2.IT项目管理专业知识是CIO的必备 3.合作伙伴管理和供应商管理对成功也很关键 4.企业数据管理技能对CIO越来越重要 5.企业财务技能是CIO的一种必备 6 ...
- delphi 右键删除dbgrid行
Delphi DBGrid右键删除行并提交至数据库.在form上添加,控件TPopupMenu,并指定右键名称:删行 2.编写删除语句: If ADOQuery1.State in [dsEdit, ...
- CSS变形transform(2d)
前面的话 CSS变形transform是一些效果的集合,主要是移动.旋转.缩放和倾斜这四种基本操作,还可以通过设置matrix矩阵来实现更复杂的效果.变形transform可以实现2D和3D两种效果. ...
- 深度学习网络压缩模型方法总结(model compression)
两派 1. 新的卷机计算方法 这种是直接提出新的卷机计算方式,从而减少参数,达到压缩模型的效果,例如SqueezedNet,mobileNet SqueezeNet: AlexNet-level ac ...
- 注册页面手机验证码无跳转接收[html+js+ajax+php]
[学习笔记] 来源:注册时需要使用短信验证码,但是注册的时候,点击接收验证码时,会产生跳转(尼玛,这不是我想要的啊!o(╥﹏╥)o) 查询资料和看书之后,知道使用js+ajax可以实现,就从网上找了一 ...
- Django实现websocket完成实时通讯,聊天室,在线客服等
一 什么是Websocket WebSocket是一种在单个TCP连接上进行全双工通信的协议 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在WebS ...