题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6229

转载:

https://blog.csdn.net/Anna__1997/article/details/78494788

题目大意

N * N的区域内,有K个格子不能到达,机器人从(0, 0)出发有均等的该概率留在原地和到达上下左右可到达的区域,问无穷远的时间以后有多大概率到达 x + y >= n - 1 的区域。

思路

计算除了不能到达的格子之外的格子能通往多少方向d,则格子的权值为d + 1,

ans = x + y >= n - 1 的格子的权值之和 / 总权值和

*******************************************************
马尔科夫链的随机游走模型
可建立状态转移矩阵,对n * n 的图中n * n 个点编号为0 ~[ (n - 1) * n + n – 1] 设最大编号为max
P = p(i, j) =

[p(0, 0) p(0, 1) … p(0, max)
P(1, 0) p(1, 1) … p(1, max)

P(max, 0) p(max, 1) … p(max, max)]
π(i) 为 i 时间各点的概率
π(n + 1) = π(n) * P
当时间 ->无穷 π(n + 1)->π
可以通过 π * P = π 计算
验证猜测结果正确
*******************************************************
找规律的答案 有待证明
现在能想到的是 整个封闭系统每个格子以出现机器人的概率作为权值 在很长的时间线上是一个熵增的
过程(想到元胞自动机),如果要模拟这个概率扩散的过程的话,格子的权值的更新是一个用他所能到达的格子的权值
和他自身的权值迭代的过程,这个过程中可以发现他的相邻的格子的权值是在不断同化的,因此,在无穷远后
(0, 0)的和他周围的格子的权值不在体现优势,而更加开放的格子则更占优(可根据迭代公式理解)

AC代码:

#include<bits/stdc++.h>
using namespace std;
typedef pair<int,int> pii; const int maxn=+;
const int maxk=+;
const int dx[]={,,,-};
const int dy[]={,,-,}; int n,k;
map<pii,bool> mp;
int p,q; inline int gcd(int m,int n){return n?gcd(n,m%n):m;}
inline int check(const int &x,const int &y)
{
if(x<||x>=n||y<||y>=n) return ; if((x==||x==n-) && (y==||y==n-)) return ;
else if((x==||x==n-) && (y!=&&y!=n-)) return ;
else if((y==||y==n-) && (x!=&&x!=n-)) return ;
else return ;
} int main()
{
int T;
cin>>T;
for(int kase=;kase<=T;kase++)
{
mp.clear(); scanf("%d%d",&n,&k);
for(int i=,x,y;i<=k;i++)
{
scanf("%d%d",&x,&y);
mp[make_pair(x,y)]=;
} p=*+*(n-)*+(n-)*(n-)/*;
q=*+*(n-)*+(n-)*(n-)*;
for(map<pii,bool>::iterator it=mp.begin();it!=mp.end();it++)
{
int x=((*it).first).first;
int y=((*it).first).second;
if(x+y>=n-) p-=check(x,y);
q-=check(x,y); for(int i=;i<;i++)
{
int nxtx=x+dx[i];
int nxty=y+dy[i];
if(check(nxtx,nxty)> && mp.count(make_pair(nxtx,nxty))==)
{
if(nxtx+nxty>=n-) p--;
q--;
}
}
} int g=gcd(p,q);
printf("Case #%d: %d/%d\n",kase,p/g,q/g);
}
}

HDU 6229 - Wandering Robots - [概率题]的更多相关文章

  1. HDU 6229 Wandering Robots(2017 沈阳区域赛 M题,结论)

    题目链接  HDU 6229 题意 在一个$N * N$的格子矩阵里,有一个机器人. 格子按照行和列标号,左上角的坐标为$(0, 0)$,右下角的坐标为$(N - 1, N - 1)$ 有一个机器人, ...

  2. hdu6229 Wandering Robots 2017沈阳区域赛M题 思维加map

    题目传送门 题目大意: 给出一张n*n的图,机器人在一秒钟内任一格子上都可以有五种操作,上下左右或者停顿,(不能出边界,不能碰到障碍物).题目给出k个障碍物,但保证没有障碍物的地方是强联通的,问经过无 ...

  3. HDU-6229 ICPC-沈阳M- Wandering Robots 概率

    HDU - 6229 题意: 在一个n*n的地图中,有一个初始在(0,0)位子的机器人,每次等概率的向相邻的格子移动或者留在原地.问最后留在格子(x,y)(x+y>=n-1)的地方的概率. 思路 ...

  4. HDU 4465 - Candy(概率与数学优化)

    2012成都Regional的B题,花了一个小时推出了式子,但是搞了好久发现都控制不了精度,后来突然想到组合数可以用log优化,改了之后就AC了 比较水的概率题 #include <stdio. ...

  5. ACM-ICPC 2017 沈阳赛区现场赛 M. Wandering Robots && HDU 6229(思维+期望)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=6229 参考题解:https://blog.csdn.net/lifelikes/article/det ...

  6. HDU 5985/nowcoder 207D - Lucky Coins - [概率题]

    题目链接:https://www.nowcoder.com/acm/contest/207/D 题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5985 ...

  7. HDU 5245 Joyful(概率题求期望)

    D - Joyful Time Limit:1000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Submit S ...

  8. HDU 2843 I Will Win(概率题?,怨念颇深,简单)

    题目 真不想说什么,,,这神题真讨厌,,,多校的.. //又是一道神题... #include<stdio.h> #include<string.h> //最大公约数 int ...

  9. 【概率】【找规律】hdu6229 Wandering Robots

    题意:一个机器人在正方形迷宫的左上角,迷宫里有些格子有障碍物,每一步机器人会等概率地向能走的格子转移(包含自身).问你无限长的时间之后,机器人处于矩形对角线的右下方的概率. 无限长时间意味着,起点没有 ...

随机推荐

  1. device eth0 does not seem to be present, delaying initialization(转)

    vmlite虚拟机启动出错,就把这个虚拟机删除掉重新建立,系统虚拟硬盘使用之前的,启动系统后不能上网,通过ifconfig查看网卡没启动,遂启动网卡服务,但是出错,就是:device eth0 doe ...

  2. redis性能测试报告

    服务器配置:16核心,64G 250个并发读:250个并发写性能[内容8千byte] 163为读:164为写:

  3. MUI class="mui-switch" 开关监听

    如何对MUI中的switch开关按钮进行监听, 页面代码如下: <form class="mui-input-group"> <ul class="mu ...

  4. [剑指Offer]5.二维数组中的查找

    题目 在一个二维数组中,每一行都依照从左到右递增的顺序排序,每一列都依照从上到下递增的顺序排序.请完毕一个函数,输入这种一个二维数组和一个整数.推断数组中是否含有该整数. 思路 [算法系列之三十三]杨 ...

  5. CountDownLatch、CyclicBarrier及Semaphore的用法示例

    一.参考blog https://www.cnblogs.com/dolphin0520/p/3920397.html 二.CountDownLatch 个人把它类比于一个持有计数的闸门,每到达这个闸 ...

  6. Redis高可用详解:持久化技术及方案选择

    文章摘自:https://www.cnblogs.com/kismetv/p/9137897.html 前言 在上一篇文章中,介绍了Redis的内存模型,从这篇文章开始,将依次介绍Redis高可用相关 ...

  7. android的左右滑动效果实现-ViewFlipper

    说到android的左右滑动效果我们可以说是在每个应用上面都可以看到这样的效果,不管是微博,还是QQ等.实现左右滑动的方式很多,有ViewPaer(不过这个和需要android-support-v4. ...

  8. asp.net Request、Request.Form、Request.QueryString的区别(转)

    Request.Form:获取以POST方式提交的数据. Request.QueryString:获取地址栏参数(以GET方式提交的数据). Request:包含以上两种方式(优先获取GET方式提交的 ...

  9. QT-Qt获取当前时间并格式化输出及将积秒转换成时间

    https://blog.csdn.net/u012199908/article/details/50731543 格式化输出当前时刻qDebug()<<"currentTime ...

  10. JavaScript反向shell

    Node.js反向Shell 摘自:http://www.itfang.net/?p=109 如下的Javascript就是一个Node.js的反向连接shell. 这个payload将会生成一个/b ...