Codeforces 932G Palindrome Partition 回文树+DP
题意:给定一个串,把串分为偶数段
假设分为\(s_1,s_2,s_3....s_k\)
求满足$ s_1=s_k,s_2=s_{ k-1 }... $的方案数模\(10^9+7\)
\(|S|\leq 10^6\)
首先想到将原串变为\(s_1 s_n s_2 s_{n-2}...\) 这样问题变成了求将新串分成任意个偶数长度回文串的方案数
对于这个问题,我们先给出两个结论
\(1.\)一个回文串S的后缀\(T\)如果是回文串等价于\(T\)是\(S\)的$border $
\(2.\)将一个串\(S\)的所有\(borde\)r按长度从小到大排序后,能形成\(log\)个等差数列
设\(f_i\)表示\(s[1...i]\)分成回文串的方案数,\(g_p\)表示回文串\(p\)在\(s[1...i]\)中最后一次出现且此时为等差数列\((str_1,str_2,str_3...,p)\)的最后一项时的\(\sum_{str_i}f_{i-|str_i|}\)
对于一个等差序列,设当前节点为末项的等差数列有\(b_1,b_2,b_3\),公差为\(d\),其中\(|b1|>|b2|>|b3|\)那么有\(g_p=f_{i-b1}+f_{i-b2}+f_{i-b3}\)
根据结论\(1\),不难发现\(S_{i-b2,i-d}=S_{i-b3,i},S_{i-b1,i-d}=S_{i-b2,i}\),那么在\(g_{fail[p]}\)中就已经包含了\(f_{i-b1}\)和\(f{i-b2}\),只要把\(f_{i-b3}\)加上就好了
#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 1000000007
#define ll long long
#define mk make_pair
#define pb push_back
#define lb double
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=1e6+5;
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
int n,lst,cnt=1,id[N],nxt[N],c[N][26],fail[N],len[N],f[N],g[N],diff[N];
char s[N],ss[N];
int extend(int x,int n){
int p=lst;
while(s[n-len[p]-1]!=s[n]) p=fail[p];
if(!c[p][x]){
int now=++cnt,k=fail[p];
len[now]=len[p]+2;
while(s[n-len[k]-1]!=s[n]) k=fail[k];
fail[now]=c[k][x],c[p][x]=now;
diff[now]=len[now]-len[fail[now]];
if(diff[now]==diff[fail[now]]) nxt[now]=nxt[fail[now]];
else nxt[now]=fail[now];
}
return lst=c[p][x];
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
scanf("%s",ss+1),n=strlen(ss+1);
for(int i=1,j=0;i<=n;i+=2) s[i]=ss[++j];
for(int i=2,j=n+1;i<=n;i+=2) s[i]=ss[--j];
fail[0]=fail[1]=1,len[1]=-1,f[0]=1;
for(int i=1;i<=n;i++) id[i]=extend(s[i]-'a',i);
for(int i=1;i<=n;i++){
for(int j=id[i];j;j=nxt[j]){
g[j]=f[i-len[nxt[j]]-diff[j]];
if(diff[j]==diff[fail[j]]) (g[j]+=g[fail[j]])%=mod;
if(!(i&1)) (f[i]+=g[j])%=mod;
}
}
printf("%d\n",f[n]);
}
Codeforces 932G Palindrome Partition 回文树+DP的更多相关文章
- Codeforces 932G Palindrome Partition - 回文树 - 动态规划
题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$ ...
- CF932G Palindrome Partition(回文自动机)
CF932G Palindrome Partition(回文自动机) Luogu 题解时间 首先将字符串 $ s[1...n] $ 变成 $ s[1]s[n]s[2]s[n-1]... $ 就变成了求 ...
- Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)
题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...
- Palisection(Codeforces Beta Round #17E+回文树)
题目链接 传送门 题意 给你一个串串,问你有多少对回文串相交. 思路 由于正着做不太好算答案,那么我们考虑用总的回文对数减去不相交的回文对数. 而不相交的回文对数可以通过计算以\(i\)为右端点的回文 ...
- HDU 6599 I Love Palindrome String (回文树+hash)
题意 找如下子串的个数: (l,r)是回文串,并且(l,(l+r)/2)也是回文串 思路 本来写了个回文树+dfs+hash,由于用了map所以T了 后来发现既然该子串和该子串的前半部分都是回文串,所 ...
- 【CF932G】Palindrome Partition 回文自动机
[CF932G]Palindrome Partition 题意:给你一个字符串s,问你有多少种方式,可以将s分割成k个子串,设k个子串是$x_1x_2...x_k$,满足$x_1=x_k,x_2=x_ ...
- BZOJ4044: [Cerc2014] Virus synthesis(回文树+DP)
Description Viruses are usually bad for your health. How about fighting them with... other viruses? ...
- 2019牛客暑期多校训练营(第六场)Palindrome Mouse 回文树+dfs
题目传送门 题意:给出一个字符串,将字符串中所有的回文子串全部放入一个集合里,去重后.问这个集合里有几对<a,b>,使得a是b的子串. 思路:一开始想偏了,以为只要求每个回文串的回文后缀的 ...
- @codeforces - 932G@ Palindrome Partition
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个字符串 s,求有多少种方案可将其划分成偶数个段 \(p_ ...
随机推荐
- Bootstrap3.0学习第一轮(入门)
详情请查看 http://aehyok.com/Blog/Detail/7.html 个人网站地址:aehyok.com QQ 技术群号:206058845,验证码为:aehyok 本文文章链接:ht ...
- I/O 接口及其编址方式
I/O 接口电路也简称接口电路.它是主机和外围设备之间交换信息的连接部件(电路).它在主机和外围设备之间的信息交换中起着桥梁和纽带作用.设置接口电路的必要性:a) 解决主机CPU 和外围设备之间的时序 ...
- Intellij IDEA14 搜索框及控制台乱码解决
搜索ctrl+F及ctrl+H的搜索框.调试的时候控制台.导入module都显示为为中文乱码 如下: 解决方案: File->Setting->IDE Settings->Appea ...
- Oracle 服务器结构
[学习目标] 作为一个数据库管理员(DBA),经常会遇到各种没有见过的问题.除了宝贵的经验外, 通过理论基础去对问题进行判断.解决是至关重要的.因此,Oracle 服务器的结构和组成 是学习Oracl ...
- linux eclipse 报错过时的方法
重新配置jre库 https://jingyan.baidu.com/article/7f766daff5b8cd4101e1d0b4.html
- hdu1506单调栈的宽度
很好的题目,单调栈上的宽度如何求 题解:https://blog.csdn.net/baidu_35643793/article/details/64440095 单调队列和单调栈都是去除没有用的数据 ...
- websocket+Django+python+paramiko实现web页面执行命令并实时输出
一.概述 WebSocket WebSocket的工作流程:浏览器通过JavaScript向服务端发出建立WebSocket连接的请求,在WebSocket连接建立成功后,客户端和服务端就可以通过 T ...
- SqlServer基础语法(三)
1.数据库备份的方法: 完整数据库备份GPOSDB 文件大小:23MB 日志备份 GPOSDB日志备份文件大小:211KB --完整备份 Backup DATABASE GPOSDB To disk= ...
- Django ORM中使用update_or_create功能再解
以前,我解过这个问题,现在百度搜索,发了像也只能找到我这个帖子. https://www.cnblogs.com/aguncn/p/4922654.html 今天,看了看官方文档,关于这个update ...
- thinkphp注册验证
在model中新建一个UserModel //覆盖原本的设置 //一次性获得全部验证错误 protected $patchValidate = true; //实现表单项目验证 //通过重写父类属性_ ...