Codeforces 932G Palindrome Partition 回文树+DP
题意:给定一个串,把串分为偶数段
假设分为\(s_1,s_2,s_3....s_k\)
求满足$ s_1=s_k,s_2=s_{ k-1 }... $的方案数模\(10^9+7\)
\(|S|\leq 10^6\)
首先想到将原串变为\(s_1 s_n s_2 s_{n-2}...\) 这样问题变成了求将新串分成任意个偶数长度回文串的方案数
对于这个问题,我们先给出两个结论
\(1.\)一个回文串S的后缀\(T\)如果是回文串等价于\(T\)是\(S\)的$border $
\(2.\)将一个串\(S\)的所有\(borde\)r按长度从小到大排序后,能形成\(log\)个等差数列
设\(f_i\)表示\(s[1...i]\)分成回文串的方案数,\(g_p\)表示回文串\(p\)在\(s[1...i]\)中最后一次出现且此时为等差数列\((str_1,str_2,str_3...,p)\)的最后一项时的\(\sum_{str_i}f_{i-|str_i|}\)
对于一个等差序列,设当前节点为末项的等差数列有\(b_1,b_2,b_3\),公差为\(d\),其中\(|b1|>|b2|>|b3|\)那么有\(g_p=f_{i-b1}+f_{i-b2}+f_{i-b3}\)
根据结论\(1\),不难发现\(S_{i-b2,i-d}=S_{i-b3,i},S_{i-b1,i-d}=S_{i-b2,i}\),那么在\(g_{fail[p]}\)中就已经包含了\(f_{i-b1}\)和\(f{i-b2}\),只要把\(f_{i-b3}\)加上就好了
#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 1000000007
#define ll long long
#define mk make_pair
#define pb push_back
#define lb double
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=1e6+5;
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
int n,lst,cnt=1,id[N],nxt[N],c[N][26],fail[N],len[N],f[N],g[N],diff[N];
char s[N],ss[N];
int extend(int x,int n){
int p=lst;
while(s[n-len[p]-1]!=s[n]) p=fail[p];
if(!c[p][x]){
int now=++cnt,k=fail[p];
len[now]=len[p]+2;
while(s[n-len[k]-1]!=s[n]) k=fail[k];
fail[now]=c[k][x],c[p][x]=now;
diff[now]=len[now]-len[fail[now]];
if(diff[now]==diff[fail[now]]) nxt[now]=nxt[fail[now]];
else nxt[now]=fail[now];
}
return lst=c[p][x];
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
scanf("%s",ss+1),n=strlen(ss+1);
for(int i=1,j=0;i<=n;i+=2) s[i]=ss[++j];
for(int i=2,j=n+1;i<=n;i+=2) s[i]=ss[--j];
fail[0]=fail[1]=1,len[1]=-1,f[0]=1;
for(int i=1;i<=n;i++) id[i]=extend(s[i]-'a',i);
for(int i=1;i<=n;i++){
for(int j=id[i];j;j=nxt[j]){
g[j]=f[i-len[nxt[j]]-diff[j]];
if(diff[j]==diff[fail[j]]) (g[j]+=g[fail[j]])%=mod;
if(!(i&1)) (f[i]+=g[j])%=mod;
}
}
printf("%d\n",f[n]);
}
Codeforces 932G Palindrome Partition 回文树+DP的更多相关文章
- Codeforces 932G Palindrome Partition - 回文树 - 动态规划
题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$ ...
- CF932G Palindrome Partition(回文自动机)
CF932G Palindrome Partition(回文自动机) Luogu 题解时间 首先将字符串 $ s[1...n] $ 变成 $ s[1]s[n]s[2]s[n-1]... $ 就变成了求 ...
- Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)
题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...
- Palisection(Codeforces Beta Round #17E+回文树)
题目链接 传送门 题意 给你一个串串,问你有多少对回文串相交. 思路 由于正着做不太好算答案,那么我们考虑用总的回文对数减去不相交的回文对数. 而不相交的回文对数可以通过计算以\(i\)为右端点的回文 ...
- HDU 6599 I Love Palindrome String (回文树+hash)
题意 找如下子串的个数: (l,r)是回文串,并且(l,(l+r)/2)也是回文串 思路 本来写了个回文树+dfs+hash,由于用了map所以T了 后来发现既然该子串和该子串的前半部分都是回文串,所 ...
- 【CF932G】Palindrome Partition 回文自动机
[CF932G]Palindrome Partition 题意:给你一个字符串s,问你有多少种方式,可以将s分割成k个子串,设k个子串是$x_1x_2...x_k$,满足$x_1=x_k,x_2=x_ ...
- BZOJ4044: [Cerc2014] Virus synthesis(回文树+DP)
Description Viruses are usually bad for your health. How about fighting them with... other viruses? ...
- 2019牛客暑期多校训练营(第六场)Palindrome Mouse 回文树+dfs
题目传送门 题意:给出一个字符串,将字符串中所有的回文子串全部放入一个集合里,去重后.问这个集合里有几对<a,b>,使得a是b的子串. 思路:一开始想偏了,以为只要求每个回文串的回文后缀的 ...
- @codeforces - 932G@ Palindrome Partition
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个字符串 s,求有多少种方案可将其划分成偶数个段 \(p_ ...
随机推荐
- vss 日文文件路径的名字在中文系统下乱码
解决方式:tools-font 文字设置 日本語
- getOutputStream与getWriter方法
getOutputStream方法用于返回Servlet引擎创建的字节输出流对象,Servlet程序可以按字节形式输出响应正文.getWriter方法用于返回Servlet引擎创建的字符输出流对象,S ...
- gitlab代码仓库迁移
有的时候我们需要对gitlab上的代码进行迁移,希望在迁移后能保持原有的branch.tag.commit记录等.可以使用以下方式: 1.clone代码到本地. 2.修改remote仓库的地址,添加新 ...
- inoremap nnoremap vnoremap
原贴:https://www.xuebuyuan.com/zh-hant/1116162.html inoremap nnoremap vnoremap i insert 在插入模式有效 n 在 普通 ...
- Hibernate之一级缓存和二级缓存
1:Hibernate的一级缓存: 1.1:使用一级缓存的目的是为了减少对数据库的访问次数,从而提升hibernate的执行效率:(当执行一次查询操作的时候,执行第二次查询操作,先检查缓存中是否有数据 ...
- Struts2(接受表单参数)请求数据自动封装和数据类型转换
Struts2请求数据自动封装: (1)实现原理:参数拦截器 (2)方式1:jsp表单数据填充到action中的属性: 普通的成员变量,必须给set,get可以不给的. 注意点,A ...
- CS224d 单隐层全连接网络处理英文命名实体识别tensorflow
什么是NER? 命名实体识别(NER)是指识别文本中具有特定意义的实体,主要包括人名.地名.机构名.专有名词等.命名实体识别是信息提取.问答系统.句法分析.机器翻译等应用领域的重要基础工具,作为结构化 ...
- BZOJ2325 [ZJOI2011]道馆之战 树链剖分 线段树
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ2325 题意概括 给你一棵N个点的树,树上的每个节点有A,B两块区域,且每种区域有两种状态:可以走的 ...
- 【Java】 剑指offer(6) 重建二叉树
本文参考自<剑指offer>一书,代码采用Java语言. 更多:<剑指Offer>Java实现合集 题目 输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树.假设输入的 ...
- 在storm中运行jar产生模拟数据的时候,遇见的问题
1.问题由来 命令:java -jar data.jar 1000 >>nginx.log 报错: Exception in thread "main" java.la ...