Codeforces 932G Palindrome Partition 回文树+DP
题意:给定一个串,把串分为偶数段
假设分为\(s_1,s_2,s_3....s_k\)
求满足$ s_1=s_k,s_2=s_{ k-1 }... $的方案数模\(10^9+7\)
\(|S|\leq 10^6\)
首先想到将原串变为\(s_1 s_n s_2 s_{n-2}...\) 这样问题变成了求将新串分成任意个偶数长度回文串的方案数
对于这个问题,我们先给出两个结论
\(1.\)一个回文串S的后缀\(T\)如果是回文串等价于\(T\)是\(S\)的$border $
\(2.\)将一个串\(S\)的所有\(borde\)r按长度从小到大排序后,能形成\(log\)个等差数列
设\(f_i\)表示\(s[1...i]\)分成回文串的方案数,\(g_p\)表示回文串\(p\)在\(s[1...i]\)中最后一次出现且此时为等差数列\((str_1,str_2,str_3...,p)\)的最后一项时的\(\sum_{str_i}f_{i-|str_i|}\)
对于一个等差序列,设当前节点为末项的等差数列有\(b_1,b_2,b_3\),公差为\(d\),其中\(|b1|>|b2|>|b3|\)那么有\(g_p=f_{i-b1}+f_{i-b2}+f_{i-b3}\)
根据结论\(1\),不难发现\(S_{i-b2,i-d}=S_{i-b3,i},S_{i-b1,i-d}=S_{i-b2,i}\),那么在\(g_{fail[p]}\)中就已经包含了\(f_{i-b1}\)和\(f{i-b2}\),只要把\(f_{i-b3}\)加上就好了
#include<bits/stdc++.h>
using namespace std;
#define FO(x) {freopen(#x".in","r",stdin);freopen(#x".out","w",stdout);}
#define pa pair<int,int>
#define mod 1000000007
#define ll long long
#define mk make_pair
#define pb push_back
#define lb double
#define fi first
#define se second
#define cl(x) memset(x,0,sizeof x)
#ifdef Devil_Gary
#define bug(x) cout<<(#x)<<" "<<(x)<<endl
#define debug(...) fprintf(stderr, __VA_ARGS__)
#else
#define bug(x)
#define debug(...)
#endif
const int INF = 0x7fffffff;
const int N=1e6+5;
/*
char *TT,*mo,but[(1<<15)+2];
#define getchar() ((TT==mo&&(mo=(TT=but)+fread(but,1,1<<15,stdin),TT==mo))?-1:*TT++)//*/
inline int read(){
int x=0,rev=0,ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')rev=1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=(x<<1)+(x<<3)+ch-'0';ch=getchar();}
return rev?-x:x;
}
int n,lst,cnt=1,id[N],nxt[N],c[N][26],fail[N],len[N],f[N],g[N],diff[N];
char s[N],ss[N];
int extend(int x,int n){
int p=lst;
while(s[n-len[p]-1]!=s[n]) p=fail[p];
if(!c[p][x]){
int now=++cnt,k=fail[p];
len[now]=len[p]+2;
while(s[n-len[k]-1]!=s[n]) k=fail[k];
fail[now]=c[k][x],c[p][x]=now;
diff[now]=len[now]-len[fail[now]];
if(diff[now]==diff[fail[now]]) nxt[now]=nxt[fail[now]];
else nxt[now]=fail[now];
}
return lst=c[p][x];
}
int main(){
#ifdef Devil_Gary
freopen("in.txt","r",stdin);
#endif
scanf("%s",ss+1),n=strlen(ss+1);
for(int i=1,j=0;i<=n;i+=2) s[i]=ss[++j];
for(int i=2,j=n+1;i<=n;i+=2) s[i]=ss[--j];
fail[0]=fail[1]=1,len[1]=-1,f[0]=1;
for(int i=1;i<=n;i++) id[i]=extend(s[i]-'a',i);
for(int i=1;i<=n;i++){
for(int j=id[i];j;j=nxt[j]){
g[j]=f[i-len[nxt[j]]-diff[j]];
if(diff[j]==diff[fail[j]]) (g[j]+=g[fail[j]])%=mod;
if(!(i&1)) (f[i]+=g[j])%=mod;
}
}
printf("%d\n",f[n]);
}
Codeforces 932G Palindrome Partition 回文树+DP的更多相关文章
- Codeforces 932G Palindrome Partition - 回文树 - 动态规划
题目传送门 通往???的传送点 通往神秘地带的传送点 通往未知地带的传送点 题目大意 给定一个串$s$,要求将$s$划分为$t_{1}t_{2}\cdots t_{k}$,其中$2\mid k$,且$ ...
- CF932G Palindrome Partition(回文自动机)
CF932G Palindrome Partition(回文自动机) Luogu 题解时间 首先将字符串 $ s[1...n] $ 变成 $ s[1]s[n]s[2]s[n-1]... $ 就变成了求 ...
- Palindrome Partition CodeForces - 932G 回文树+DP+(回文后缀的等差性质)
题意: 给出一个长度为偶数的字符串S,要求把S分成k部分,其中k为任意偶数,设为a[1..k],且满足对于任意的i,有a[i]=a[k-i+1].问划分的方案数. n<=1000000 题解: ...
- Palisection(Codeforces Beta Round #17E+回文树)
题目链接 传送门 题意 给你一个串串,问你有多少对回文串相交. 思路 由于正着做不太好算答案,那么我们考虑用总的回文对数减去不相交的回文对数. 而不相交的回文对数可以通过计算以\(i\)为右端点的回文 ...
- HDU 6599 I Love Palindrome String (回文树+hash)
题意 找如下子串的个数: (l,r)是回文串,并且(l,(l+r)/2)也是回文串 思路 本来写了个回文树+dfs+hash,由于用了map所以T了 后来发现既然该子串和该子串的前半部分都是回文串,所 ...
- 【CF932G】Palindrome Partition 回文自动机
[CF932G]Palindrome Partition 题意:给你一个字符串s,问你有多少种方式,可以将s分割成k个子串,设k个子串是$x_1x_2...x_k$,满足$x_1=x_k,x_2=x_ ...
- BZOJ4044: [Cerc2014] Virus synthesis(回文树+DP)
Description Viruses are usually bad for your health. How about fighting them with... other viruses? ...
- 2019牛客暑期多校训练营(第六场)Palindrome Mouse 回文树+dfs
题目传送门 题意:给出一个字符串,将字符串中所有的回文子串全部放入一个集合里,去重后.问这个集合里有几对<a,b>,使得a是b的子串. 思路:一开始想偏了,以为只要求每个回文串的回文后缀的 ...
- @codeforces - 932G@ Palindrome Partition
目录 @description@ @solution@ @accepted code@ @details@ @description@ 给定一个字符串 s,求有多少种方案可将其划分成偶数个段 \(p_ ...
随机推荐
- 了解的CAP和BASE等理论
CAP,BASE和最终一致性是NoSQL数据库存在的三大基石.而五分钟法则是内存数据存储的理论依据.这个是一切的源头. 几个名词解释: 网络分区:俗称“脑裂”.当网络发生异常情况,导致分布式系统中部分 ...
- css3图片旋转
<!DOCTYPE html> <html lang="en"> <head> <meta http-equiv="Conten ...
- 基于vue的UI框架集锦
前端框架百花齐放.争奇斗艳,令人眼花缭乱.大神们一言不合就整一个框架出来,另小白们无所适从.下面罗列了一些比较优秀的UI框架,Star多的大都是老牌劲旅,Star少的许多是后起之秀. (1)Eleme ...
- MySQL数据库排序选择的作用和该如何选择编码格式
前言:在创建数据库的时候,会有这样一个选项->排序规则,平时在创建数据库的时候并没有注意,只是选择了默认,也没感觉有什么问题,今天看到这个突然好奇起来,所以看了一些资料做了以下的一些总结,若有错 ...
- web----框架基础
Web框架本质: 众所周知,对于所有的Web应用,本质上其实就是一个socket服务端,用户的浏览器其实就是一个socket客户端. 真实开发中的python web程序来说,一般会分为两部分:服务器 ...
- Math 对象
Math对象提供了,我们一般进行数学运算的所有函数. Math.random() 随机0~1之间的随机数 [0, 1) Math.max() 求传入参数的最大数 Math.min() 求传入参数的最小 ...
- myEclipse配置java版本(环境、项目、编译)
从别的地方导入一个项目的时候,经常会遇到eclipse/Myeclipse报Description Resource Path Location Type Java compiler level d ...
- 方法名太多,使用方法的重载(overload)来解决
package chapter04; /* 问题:方法名太多了,不容易记忆,有时会出错 使用方法的重载(overload)来解决 */public class C09_Method { public ...
- CentOS 7命令行安装GNOME、KDE图形界面
https://www.linuxidc.com/Linux/2018-04/152000.htm
- la 4015
题解: 烂大街的树形dp?? f[i][j]表示到i点,在i的子树中经过j个,且要返回i点的最小值 g[i][j]表示到i点,在i的子树中经过j个,且不用返回i点的最小值 然后转移做背包就可以了 (注 ...